A242403 Decimal expansion of the binary self-numbers density constant.
2, 5, 2, 6, 6, 0, 2, 5, 9, 0, 0, 8, 8, 8, 2, 9, 2, 2, 1, 5, 5, 0, 6, 2, 7, 1, 4, 3, 2, 7, 8, 9, 4, 1, 4, 1, 8, 2, 5, 2, 1, 9, 3, 3, 9, 6, 2, 9, 7, 8, 4, 6, 1, 3, 0, 1, 6, 8, 6, 2, 1, 7, 2, 2, 9, 2, 2, 8, 0, 5, 4, 8, 4, 4, 7, 6, 6, 3, 2, 5, 6, 6, 9, 5, 9, 1, 4, 2, 4, 4, 7, 9, 3, 8, 6, 8, 8, 9, 4, 9
Offset: 0
Examples
0.2526602590088829221550627143278941418252...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 179.
- József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 384-386.
- G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers, Bollettino dell'Unione Matematica Italiana, Serie 7, Vol. 9-A, No. 1 (1995), pp. 143-148.
Links
- G. Troi and U. Zannier, Note on the density constant in the distribution of self-numbers - II, Bollettino dell'Unione Matematica Italiana, Serie 8, Vol. 2-B, No. 2 (1999), pp. 397-399; alternative link.
- Umberto Zannier, On the distribution of self-numbers, Proc. Amer. Math. Soc., Vol. 85, No. 1 (1982), pp. 10-14.
- Index entries for transcendental numbers
Crossrefs
Programs
-
Mathematica
m0 = 100; dm = 100; digits = 100; Clear[lambda]; lambda[m_] := lambda[m] = Total[1/2^Union[Table[n + Total[IntegerDigits[n, 2]], {n, 0, m}]]]^2/8 // N[#, 2*digits]& // RealDigits[#, 10, 2*digits]& // First; lambda[m0]; lambda[m = m0 + dm]; While[lambda[m] != lambda[m - dm], Print["m = ", m]; m = m + dm]; lambda[m][[1 ;; digits]]
Formula
Equals (1/8)*(Sum_{n not a binary self-number} 1/2^n)^2.
Comments