This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242405 #8 Mar 31 2018 07:33:02 %S A242405 1,-6,15,-24,39,-72,123,-192,294,-456,693,-1008,1452,-2100,2991,-4176, %T A242405 5781,-7992,10950,-14808,19908,-26688,35541,-46944,61692,-80826, %U A242405 105366,-136536,176208,-226728,290565,-370704,471318,-597600,755217,-950976,1193988 %N A242405 Expansion of (b(q) / b(q^2))^2 in powers of q where b() is a cubic AGM theta function. %C A242405 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). %C A242405 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). %H A242405 G. C. Greubel, <a href="/A242405/b242405.txt">Table of n, a(n) for n = 0..1000</a> %F A242405 Expansion of (chi(-q)^3 / chi(-q^3))^2 in powers of q where chi() is a Ramanujan theta function. %F A242405 Expansion of (eta(q)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3)))^2 in powers of q. %F A242405 Euler transform of period 6 sequence [ -6, 0, -4, 0, -6, 0, ...]. %F A242405 G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 4 g(t) where q = exp(2 Pi i t) and g() is g.f. for A216046. %F A242405 G.f.: Product_{k>0} ((1 - x^(2*k-1))^3 / (1 - x^(6*k-3)))^2. %F A242405 Convolution square of A141094. %F A242405 a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n)/3) / (2^(3/4) * sqrt(3) * n^(3/4)). - _Vaclav Kotesovec_, Nov 16 2017 %e A242405 G.f. = 1 - 6*q + 15*q^2 - 24*q^3 + 39*q^4 - 72*q^5 + 123*q^6 - 192*q^7 + ... %t A242405 a[ n_] := SeriesCoefficient[ (QPochhammer[ x, x^2]^3 / QPochhammer[ x^3, x^6])^2, {x, 0, n}]; %o A242405 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)))^2, n))}; %Y A242405 Cf. A141094, A216046. %K A242405 sign %O A242405 0,2 %A A242405 _Michael Somos_, May 13 2014