This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242412 #68 Feb 26 2025 01:53:22 %S A242412 15,23,39,63,95,135,183,239,303,375,455,543,639,743,855,975,1103,1239, %T A242412 1383,1535,1695,1863,2039,2223,2415,2615,2823,3039,3263,3495,3735, %U A242412 3983,4239,4503,4775,5055,5343,5639,5943,6255,6575,6903,7239,7583,7935,8295,8663,9039,9423,9815 %N A242412 a(n) = (2*n-1)^2 + 14. %C A242412 The previous definition was "a(n) = normalized inverse radius of the inscribed circle that is tangent to the left circle of the symmetric arbelos and the n-th and (n-1)-st circles in the Pappus chain". %C A242412 See links section for image of these circles, via Wolfram MathWorld (there an asymmetric arbelos is shown). %C A242412 The Rothman-Fukagawa article has another picture of the circles, based on a Japanese 1788 sangaku problem. - _N. J. A. Sloane_, Jan 02 2020 %H A242412 N. J. A. Sloane, <a href="/A242412/b242412.txt">Table of n, a(n) for n = 1..1000</a> %H A242412 Brady Haran and Simon Pampena, <a href="https://www.youtube.com/watch?v=sG_6nlMZ8f4">Epic Circles</a>, Numberphile video (2014). %H A242412 Tony Rothman and Hidetoshi Fukagawa, <a href="https://www.jstor.org/stable/26057787">Japanese temple geometry</a>, Scientific American, Vol. 278, No. 5, May 1998, pp. 85-91. %H A242412 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/images/eps-gif/PappusTangentChain_800.gif">Image of inscribed circles (in red)</a>. %H A242412 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PappusChain.html">Pappus Chain</a>. %H A242412 Wikipedia, <a href="http://en.wikipedia.org/wiki/Pappus_chain">Pappus chain</a>. %H A242412 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A242412 a(n) = 4*n^2 - 4*n + 15. %F A242412 From _Colin Barker_, May 14 2014: (Start) %F A242412 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A242412 G.f.: -x*(15*x^2 - 22*x + 15)/(x-1)^3. (End) %F A242412 From Descartes three circle theorem: %F A242412 a(n) = 2 + c(n) + c(n-1) + 2*sqrt(2*(c(n) + c(n-1)) + c(n)*c(n-1)), with c(n) = A059100(n) = n^2 + 2, n >= 1, which produces 4*n^2 - 4*n + 15. - _Wolfdieter Lang_, Jul 01 2015 %F A242412 From _Elmo R. Oliveira_, Nov 17 2024: (Start) %F A242412 E.g.f.: exp(x)*(4*x^2 + 15) - 15. %F A242412 a(n) = A060747(n)^2 + 14. (End) %e A242412 For n = 1, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the opposite inner circle (the 0th circle in the chain), and the 1st circle in the chain is 15. %e A242412 For n = 2, the radius of the outermost circle divided by the radius of a circle drawn tangent to all three of the initial inner circle, the 1st circle in the chain, and the 2nd circle in the chain is 23. %p A242412 A242412:=n->4*n^2 - 4*n + 15; seq(A242412(n), n=1..50); # _Wesley Ivan Hurt_, May 13 2014 %t A242412 Table[4 n^2 - 4 n + 15, {n, 50}] (* _Wesley Ivan Hurt_, May 13 2014 *) %t A242412 LinearRecurrence[{3,-3,1},{15,23,39},50] (* _Harvey P. Dale_, Feb 22 2023 *) %o A242412 (Magma) [4*n^2 - 4*n + 15: n in [1..50]]; // _Wesley Ivan Hurt_, May 13 2014 %o A242412 (PARI) a(n) = 4*n^2 - 4*n + 15 \\ _Charles R Greathouse IV_, May 14 2014 %Y A242412 Cf. A000012, A060747, A059100, A114949, A222465, A259555. %K A242412 nonn,easy %O A242412 1,1 %A A242412 _Aaron David Fairbanks_, May 13 2014 %E A242412 More terms from _Wesley Ivan Hurt_, May 13 2014 %E A242412 More terms and links from _Robert G. Wilson v_, May 13 2014 %E A242412 Edited: Name reformulated (with consent of the author). - _Wolfdieter Lang_, Jul 01 2015 %E A242412 Edited by _N. J. A. Sloane_, Jan 02 2020, simplifying the definition and adding a reference to the fact that this sequence arose in a sangaku problem from 1788 in a temple in Tokyo Prefecture.