This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242418 #13 Aug 27 2016 09:57:04 %S A242418 1,2,4,6,8,10,14,16,22,26,30,32,34,36,38,46,58,62,64,74,82,86,90,94, %T A242418 100,106,110,118,122,128,134,142,146,158,166,178,194,196,202,206,210, %U A242418 214,216,218,226,238,254,256,262,270,274,278,298,300,302,314,326,334 %N A242418 Numbers n in whose prime factorization, n = 2^e1 * 3^e2 * 5^e3 * ... * p_k^e_k, the exponents (some of them possibly zero) of prime factors from 2 to p_k form a palindrome, so that e1 = e_k, e2 = e_{k-1}, etc. %C A242418 a(1)=1 is included because 1 has an empty factorization (either no exponents, or all of them are zero), which thus is also a palindrome. %H A242418 Antti Karttunen, <a href="/A242418/b242418.txt">Table of n, a(n) for n = 1..1200</a> %F A242418 a(1)=1, and for n > 1, a(n) = 2 * A241912(n-1). %t A242418 f[n_] := If[n == 1, {0}, Function[f, ReplacePart[Table[0, {PrimePi[f[[-1, 1]]]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, f]]@ FactorInteger@ n]; g[w_List] := Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, w]; Select[Range@ 336, g@ f@ # == g@ Reverse@ f@ # &] (* _Michael De Vlieger_, Aug 27 2016 *) %o A242418 (Scheme, with _Antti Karttunen_'s IntSeq-library) %o A242418 (define A242418 (FIXED-POINTS 1 1 A137502)) %o A242418 ;; Alternatively: %o A242418 (define (A242418 n) (if (= 1 n) n (* 2 (A241912 (- n 1))))) %Y A242418 Fixed points of A137502. %Y A242418 Cf. A241912. %Y A242418 A002110 and A079704 are subsequences. %K A242418 nonn %O A242418 1,2 %A A242418 _Antti Karttunen_, May 20 2014