A242425 Number of squares k^2 < prime(n) with k^2*p == 1 (mod prime(n)) for some prime p < prime(n).
0, 0, 0, 1, 2, 1, 2, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 2, 4, 2, 1, 4, 3, 4, 4, 3, 4, 2, 2, 2, 8, 2, 2, 2, 6, 5, 1, 4, 2, 5, 3, 3, 1, 2, 6, 4, 4, 2, 3, 3, 3, 5, 2, 3, 2, 5, 5, 4, 8, 4, 2, 7, 2, 4, 5, 5, 3, 4, 3, 2, 5
Offset: 1
Keywords
Examples
a(4) = 1 since 2^2*2 == 1 (mod prime(4)=7). a(6) = 1 since 3^2*3 == 1 (mod prime(6)=13). a(9) = 1 since 4^2*13 == 1 (mod prime(9)=23). a(18) = 1 since 7^2*5 == 1 (mod prime(18)=61). a(30) = 1 since 8^2*83 == 1 (mod prime(30)=113). a(46) = 1 since 10^2*2 == 1 (mod prime(46)=199). a(52) = 1 since 15^2*17 == 1 (mod prime(52)=239). a(97) = 1 since 18^2*11 == 1 (mod prime(97)=509).
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
r[k_,n_]:=PowerMod[k^2,-1,Prime[n]] Do[m=0;Do[If[PrimeQ[r[k,n]],m=m+1],{k,1,Sqrt[Prime[n]-1]}];Print[n," ",m];Continue,{n,1,80}]
Comments