This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242431 #21 Feb 26 2021 18:37:05 %S A242431 1,2,1,5,3,1,14,10,4,1,43,35,17,5,1,144,128,74,26,6,1,523,491,329,137, %T A242431 37,7,1,2048,1984,1498,730,230,50,8,1,8597,8469,7011,3939,1439,359,65, %U A242431 9,1,38486,38230,33856,21568,9068,2588,530,82,10,1 %N A242431 Triangle read by rows: T(n, k) = (k + 1)*T(n-1, k) + Sum_{j=k..n-1} T(n-1, j) for k < n, T(n, n) = 1. T(n, k) for n >= 0 and 0 <= k <= n. %H A242431 Peter Luschny, <a href="/A242431/b242431.txt">Rows n = 0..50, flattened.</a> %H A242431 Mathew Englander, <a href="/A089246/a089246.pdf">Comments on A101494 and A089246, and related sequences</a> %F A242431 T(n, 0) = A047970(n). %F A242431 Sum_{k=0..n} T(n, k) = A112532(n+1). %F A242431 From _Mathew Englander_, Feb 25 2021: (Start) %F A242431 T(n,k) = 1 + Sum_{i = k+1..n} i*(i+1)^(n-i). %F A242431 T(n,k) = T(n,k+1) + (k+1)*(k+2)^(n-k-1) for 0 <= k < n. %F A242431 T(n,k) = T(n,k+1) + (k+2)*(T(n-1,k) - T(n-1,k+1)) for 0 <= k <= n-2. %F A242431 T(n,k) = Sum_{i = 0..n-k} (k+2)^i*A089246(n-k,i). %F A242431 Sum_{i = k..n} T(i,k) = Sum_{i = 0..n-k} (n+2-i)^i = Sum_{i = 0..n-k} A101494(n-k,i)*(k+2)^i. (End) %e A242431 0| 1; %e A242431 1| 2, 1; %e A242431 2| 5, 3, 1; %e A242431 3| 14, 10, 4, 1; %e A242431 4| 43, 35, 17, 5, 1; %e A242431 5| 144, 128, 74, 26, 6, 1; %e A242431 6| 523, 491, 329, 137, 37, 7, 1; %e A242431 7| 2048, 1984, 1498, 730, 230, 50, 8, 1; %p A242431 T := proc(n, k) option remember; local j; %p A242431 if k=n then 1 %p A242431 elif k>n then 0 %p A242431 else (k+1)*T(n-1, k) + add(T(n-1, j), j=k..n) %p A242431 fi end: %p A242431 seq(print(seq(T(n,k), k=0..n)), n=0..7); %o A242431 (Sage) %o A242431 def A242431_rows(): %o A242431 T = []; n = 0 %o A242431 while True: %o A242431 T.append(1) %o A242431 yield T %o A242431 for k in (0..n): %o A242431 T[k] = (k+1)*T[k] + add(T[j] for j in (k..n)) %o A242431 n += 1 %o A242431 a = A242431_rows() %o A242431 for n in range(8): next(a) %Y A242431 Cf. A003101, A026898, A047969, A047970, A101494, A089246. %K A242431 nonn,tabl %O A242431 0,2 %A A242431 _Peter Luschny_, May 14 2014