cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242433 Decimal expansion of one of the Pell-Stevenhagen constants.

Original entry on oeis.org

2, 6, 9, 7, 3, 1, 8, 4, 6, 1, 9, 6, 9, 6, 3, 3, 7, 7, 3, 8, 2, 1, 2, 7, 1, 0, 6, 7, 4, 8, 9, 1, 0, 8, 1, 9, 1, 9, 4, 4, 7, 4, 4, 4, 6, 3, 5, 4, 0, 4, 4, 6, 4, 2, 4, 8, 1, 8, 1, 7, 6, 7, 0, 0, 1, 7, 2, 5, 8, 5, 6, 9, 1, 1, 3, 0, 9, 7, 5, 9, 0, 5, 4, 9, 5, 1, 2, 0, 7, 2, 5, 2, 0, 0, 4, 7, 7, 3, 9, 9
Offset: 0

Views

Author

Jean-François Alcover, May 14 2014

Keywords

Comments

P. Stevenhagen conjectured that the asymptotic counting function of the squarefree integers for which the negative Pell equation x^2 - n*y^2 = -1 has an integer solution, was f(n) ~ (6/Pi^2)*P*K*n/sqrt(log(n)).

Examples

			0.26973184619696337738212710674891...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 119.

Crossrefs

Programs

  • Mathematica
    (* After Victor Adamchik *) LandauRamanujan[n_] := With[{K = Ceiling[Log[2, n*Log[3, 10]]]}, N[Product[(((1 - 2^(-2^k))*4^2^k*Zeta[2^k])/(Zeta[2^k, 1/4] - Zeta[2^k, 3/4]))^2^(-k - 1), {k, 1, K}]/Sqrt[2], n]]; K = LandauRamanujan[100]; P = 1 - QPochhammer[1/2, 1/4]; RealDigits[6/Pi^2*P*K, 10, 100] // First

Formula

(6/Pi^2)*P*K where P is the Pell constant 0.5805775582... and K the Landau-Ramanujan constant 0.7642236535...