cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242446 a(n) = Sum_{k=1..n} C(n,k) * k^(2*n).

This page as a plain text file.
%I A242446 #13 Feb 01 2018 10:30:23
%S A242446 1,18,924,93320,15609240,3903974592,1364509038592,635177480713344,
%T A242446 379867490829555840,283825251434680651520,259092157573229145859584,
%U A242446 283735986144895532781391872,367138254141051794797009309696,554136240038549806366753446051840
%N A242446 a(n) = Sum_{k=1..n} C(n,k) * k^(2*n).
%C A242446 Generally, for p>=1, a(n) = Sum_{k=1..n} C(n,k) * k^(p*n) is asymptotic to sqrt(r/(p+r-p*r)) * r^(p*n) * n^(p*n) / (exp(p*n) * (1-r)^n), where r = p/(p+LambertW(p*exp(-p))).
%C A242446 Sum_{k=1..n} (-1)^(n-k) * C(n,k) * k^(p*n) = n! * stirling2(p*n,n).
%F A242446 a(n) ~ sqrt(r/(2-r)) * r^(2*n) * n^(2*n) / (exp(2*n) * (1-r)^n), where r = 2/(2+LambertW(2*exp(-2))).
%t A242446 Table[Sum[Binomial[n,k]*k^(2*n),{k,1,n}],{n,1,20}]
%Y A242446 Cf. A007820, A072034, A242449, A256016.
%K A242446 nonn,easy
%O A242446 1,2
%A A242446 _Vaclav Kotesovec_, May 14 2014