This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242448 #22 Apr 17 2024 16:41:39 %S A242448 1,3,6,12,22,38,64,106,174,284,462,750,1216,1970,3190,5164,8358,13526, %T A242448 21888,35418,57310,92732,150046,242782,392832,635618 %N A242448 Number of distinct linear polynomials b+c*x in row n of array generated as in Comments. %C A242448 Let f1(x) = 2x, f2(x) = 1-x, f3(x) = 2-x, g(1) = (x), and g(n) = union(f1(g(n-1)), f2(g(n-1)),f3(g(n-1))) for n >1. Let T be the array whose n-th row consists of the polynomials b + c*x arranged by the relation << defined by b1 + c1*x << b2 + c2*x if c1 < c2, and b1 + c1*x << b2 + c2*x if c1 = c2 and b1 < b2. If x = 1, the array is as at A242364. %C A242448 Apparently a(n) = A168193(n-1) for 3 <= n <= 26. - _Georg Fischer_, Oct 23 2018 %F A242448 Conjecture: a(n) = 2*a(n-1) - a(n-3) for n>= 6. %e A242448 First 3 rows of the array of linear polynomials: %e A242448 x .......................................... (1 polynomial) %e A242448 1-x ... 2-x ... 2x ......................... (3 polynomials) %e A242448 1-2x .. 2-2x .. 4-2x .. -1+x .. 1+x .. 4x .. (6 polynomials) %t A242448 z = 20; g[1] = {x}; f1[x_] := 2 x; f2[x_] := 1 - x; f3[x_] := 2 - x; %t A242448 h[1] = g[1]; b[n_] := b[n] = Union[Expand[f1[g[n - 1]]], Expand[f2[g[n - %t A242448 1]]], Expand[f3[g[n - 1]]]]; h[n_] := h[n] = Union[h[n - 1], g[n - 1]]; %t A242448 g[n_] := g[n] = Complement [b[n], Intersection[b[n], h[n]]]; u = Table[Length[g[n]], {n, 1, z}] (* A242448 *) %Y A242448 Cf. A168193, A242364, A242365. %K A242448 nonn,easy %O A242448 1,2 %A A242448 _Clark Kimberling_, Jun 11 2014