cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242449 a(n) = Sum_{k=0..n} C(n,k) * (2*k+1)^(2*n+1).

This page as a plain text file.
%I A242449 #13 Nov 16 2017 02:52:57
%S A242449 1,28,3612,1064480,560632400,462479403072,550095467201728,
%T A242449 891290348282967040,1887146395301619304704,5058811707344107766328320,
%U A242449 16746136671945501439084657664,67088193422344140016282100785152,319900900946743851959321101768511488
%N A242449 a(n) = Sum_{k=0..n} C(n,k) * (2*k+1)^(2*n+1).
%C A242449 Generally, for p>=1, a(n) = Sum_{k=0..n} C(n,k) * (p*k+1)^(p*n+1) is asymptotic to n^(p*n+1) * p^(p*n+1) * r^(p*n+3/2+1/p) / (sqrt(p+r-p*r) * exp(p*n) * (1-r)^(n+1/p)), where r = p/(p+LambertW(p*exp(-p))).
%H A242449 G. C. Greubel, <a href="/A242449/b242449.txt">Table of n, a(n) for n = 0..190</a>
%F A242449 a(n) ~ n^(2*n+1) * 2^(2*n+1) * r^(2*n+2) / (sqrt(2-r) * exp(2*n) * (1-r)^(n+1/2)), where r = 2/(2+LambertW(2*exp(-2))) = 0.901829091937052...
%t A242449 Table[Sum[Binomial[n,k]*(2*k+1)^(2*n+1),{k,0,n}],{n,0,20}]
%o A242449 (PARI) for(n=0,30, print1(sum(k=0,n, binomial(n,k)*(2*k+1)^(2*n+1)), ", ")) \\ _G. C. Greubel_, Nov 16 2017
%Y A242449 Cf. A242373, A220955, A242446, A072034, A007820, A221214, A213193, A195242.
%K A242449 nonn,easy
%O A242449 0,2
%A A242449 _Vaclav Kotesovec_, May 14 2014