This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242450 #44 Mar 27 2021 14:43:47 %S A242450 1,1,2,5,14,42,132,429,1430,4862,16795,1,58783,3,208002,10,742865,35, %T A242450 2674314,126,9694383,462,35355954,1716,129638355,6435,477614391,24308, %U A242450 1,1767170815,92372,3,6563767715,352694,11,24464914983,1351996,41,91477363496,5199988 %N A242450 Number T(n,k) of Dyck paths of semilength n having exactly k (possibly overlapping) occurrences of the consecutive steps UUDDUDUUUUDUDDDDUUDD (with U=(1,1), D=(1,-1)); triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-2)/8)), read by rows. %C A242450 UUDDUDUUUUDUDDDDUUDD is a Dyck path that contains all sixteen consecutive step patterns of length 4. %H A242450 Alois P. Heinz, <a href="/A242450/b242450.txt">Rows n = 0..500, flattened</a> %e A242450 Triangle T(n,k) begins: %e A242450 : 0 : 1; %e A242450 : 1 : 1; %e A242450 : 2 : 2; %e A242450 : 3 : 5; %e A242450 : 4 : 14; %e A242450 : 5 : 42; %e A242450 : 6 : 132; %e A242450 : 7 : 429; %e A242450 : 8 : 1430; %e A242450 : 9 : 4862; %e A242450 : 10 : 16795, 1; %e A242450 : 11 : 58783, 3; %e A242450 : 12 : 208002, 10; %e A242450 : 13 : 742865, 35; %e A242450 : 14 : 2674314, 126; %e A242450 : 15 : 9694383, 462; %e A242450 : 16 : 35355954, 1716; %e A242450 : 17 : 129638355, 6435; %e A242450 : 18 : 477614391, 24308, 1; %e A242450 : 19 : 1767170815, 92372, 3; %e A242450 : 20 : 6563767715, 352694, 11; %e A242450 : 21 : 24464914983, 1351996, 41; %p A242450 b:= proc(x, y, t) option remember; `if`(x=0, 1, %p A242450 expand(`if`(y>=x-1, 0, b(x-1, y+1, [2, 3, 3, 2, 6, 3, %p A242450 8, 9, 10, 11, 3, 13, 3, 2, 2, 2, 18, 19, 3, 2][t]))+ %p A242450 `if`(t=20, z, 1)*`if`(y=0, 0, b(x-1, y-1, [1, 1, 4, 5, 1, 7, %p A242450 1, 1, 4, 4, 12, 5, 14, 15, 16, 17, 1, 1, 20, 5][t])))) %p A242450 end: %p A242450 T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(2*n, 0, 1)): %p A242450 seq(T(n), n=0..30); %t A242450 b[x_, y_, t_] := b[x, y, t] = If[x == 0, 1, Expand[If[y >= x - 1, 0, b[x - 1, y + 1, {2, 3, 3, 2, 6, 3, 8, 9, 10, 11, 3, 13, 3, 2, 2, 2, 18, 19, 3, 2}[[t]]]] + If[t == 20, z, 1]*If[y == 0, 0, b[x - 1, y - 1, {1, 1, 4, 5, 1, 7, 1, 1, 4, 4, 12, 5, 14, 15, 16, 17, 1, 1, 20, 5}[[t]]]]]]; %t A242450 T[n_] := CoefficientList[b[2n, 0, 1], z]; %t A242450 T /@ Range[0, 30] // Flatten (* _Jean-François Alcover_, Mar 27 2021, after _Alois P. Heinz_ *) %Y A242450 Row sums give A000108. %Y A242450 T(834828,k) = A243752(834828,k). %Y A242450 T(n,0) = A243753(n,834828). %Y A242450 Cf. A243820. %K A242450 nonn,tabf %O A242450 0,3 %A A242450 _Alois P. Heinz_, Jun 12 2014