This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242461 #8 Oct 23 2015 02:31:45 %S A242461 3,7,3,3,6,4,6,1,7,7,0,1,6,7,4,0,8,4,2,4,8,4,4,8,4,3,6,6,7,9,2,7,0,5, %T A242461 9,5,0,0,2,5,7,6,4,6,7,0,0,4,2,7,7,3,8,4,4,4,4,9,3,8,5,7,0,3,1,5,1,3, %U A242461 0,5,6,5,5,1,3,3,5,3,3,3,5,5,8,8,8,1,6,9,8,8,9,0,6,5,0,3,8,8,6,8 %N A242461 Decimal expansion of the first positive solution to exp(1-1/x)/x = 1/2, a binary search tree constant. %C A242461 The saturation level S_n of a binary search tree defined by a random n-permutation is such that S_n/log(n) converges to 0.3733646... in probability. %D A242461 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 349-352. %H A242461 Luc Devroye, <a href="http://luc.devroye.org/devroye_1986_univ_a_note_on_the_height_of_binary_search_trees.pdf">A Note on the Height of Binary Search Trees.</a> McGill University, Montreal, Canada (1986). %F A242461 -1/W(-1, -1/(2*e)) where W is the Lambert W function (ProductLog). %e A242461 0.373364617701674084248448436679270595... %t A242461 RealDigits[-1/ProductLog[-1, -1/(2*E)], 10, 100] // First %Y A242461 Cf. A076615, A076616, A195581, A195582, A195596. %K A242461 nonn,cons %O A242461 0,1 %A A242461 _Jean-François Alcover_, May 15 2014