A242468 Number of length n+2 0..5 arrays with no three equal elements in a row and new values 0..5 introduced in 0..5 order.
4, 12, 41, 159, 684, 3204, 16042, 84412, 460174, 2570411, 14593499, 83749169, 484000704, 2809880001, 16360962717, 95445840289, 557493277222, 3258874744858, 19059827706050, 111510210083018, 652534784892188, 3819030330465099
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....1....1....1....1....0....1....1....1....1....1....0....1....1....0 ..0....2....2....0....0....1....1....0....0....1....2....2....1....2....1....1 ..1....0....1....1....2....2....2....2....2....2....0....3....2....2....2....1 ..0....2....2....0....1....1....1....0....3....0....3....0....2....1....1....0 ..1....3....1....2....1....1....2....1....0....3....0....1....3....1....3....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A242472.
Formula
Empirical: a(n) = 11*a(n-1) - 30*a(n-2) - 21*a(n-3) + 112*a(n-4) + 63*a(n-5) - 119*a(n-6) - 120*a(n-7) - 30*a(n-8).
Empirical g.f.: x*(4 - 32*x + 29*x^2 + 152*x^3 - 31*x^4 - 285*x^5 - 215*x^6 - 49*x^7) / ((1 - x - x^2)*(1 - 2*x - 2*x^2)*(1 - 3*x - 3*x^2)*(1 - 5*x - 5*x^2)). - Colin Barker, Nov 01 2018