This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242473 #68 Apr 25 2025 05:42:02 %S A242473 3,10,126,1716,1332,2198,14740,61732,158172,268280,29792,557184, %T A242473 2343315,2623732,3218514,5657327,11911983,12710937,7218313,12526886, %U A242473 24119055,18735483,13151102,19034164,87616609,86545285,2185455,80852839,137273075,106774379,20483831,69690822,20570825 %N A242473 Binomial(2p-1,p-1) modulo p^4, with p=prime(n). %C A242473 A value of 1 indicates a Wolstenholme prime. %H A242473 Chai Wah Wu, <a href="/A242473/b242473.txt">Table of n, a(n) for n = 1..10000</a> %t A242473 Table[Mod[Binomial[2p-1,p-1],p^4],{p,Prime[Range[30]]}] (* _Harvey P. Dale_, Jun 26 2017 *) %o A242473 (PARI) forprime(n=2, 10^2, m=(binomial(2*n-1, n-1)%n^4); print1(m, ", ")); %o A242473 (Python) %o A242473 from __future__ import division %o A242473 from sympy import isprime %o A242473 A242473_list, b = [], 1 %o A242473 for n in range(1,10**4): %o A242473 if isprime(n): %o A242473 A242473_list.append(b % n**4) %o A242473 b = b*2*(2*n+1)//(n+1) # _Chai Wah Wu_, Jan 26 2016 %o A242473 (Python) %o A242473 from sympy import Mod, binomial, prime %o A242473 def A242473(n): return int(Mod(binomial(2*(p:=prime(n))-1,p-1,evaluate=False),p**4)) # _Chai Wah Wu_, Apr 24 2025 %Y A242473 Cf. A088164, A099905, A099906, A099907. Subsequence of A099908. %K A242473 nonn %O A242473 1,1 %A A242473 _Felix Fröhlich_, May 26 2014