This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242478 #10 May 21 2014 00:21:48 %S A242478 5,57839,58013,105683,160367,926899,926983,927007,928819,963121, %T A242478 963223,2329777,2384821,2384881,3228713,3228751,3229081,3229097, %U A242478 3246653,3259547,7327781,7339447 %N A242478 Primes p such that, in base 17, p = the cumulative sum of the digit-mult(digit-sum(prime)) of each prime < p. %F A242478 The function digit-mult(n) multiplies all digits d of n, where d > 0. For example, digit-mult(1230) = 1 * 2 * 3 = 6. Therefore, in base 17, digit-mult(digit-sum(9999)) = digit-mult(22) = 2 * 2 = 4 (22 in base 17 = 36 in base 10). %e A242478 5 = digit-mult(digit-sum(2)) + digit-mult(digit-sum(3)). 57839 = digit-mult(digit-sum(2)) + digit-mult(digit-sum(3)) + ... digit-mult(digit-sum(BD1C)) = digit-mult(2) + digit-mult(3) + ... digit-mult(23) = 2 + 3 + ... 2*3. Note that BD1C and 23 in base 17 = 57829 and 37 in base 10. %Y A242478 Cf. A240886. %K A242478 nonn,base %O A242478 1,1 %A A242478 _Anthony Sand_, May 16 2014