cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242479 Primes p such that, in base 17, p = the cumulative sum of the digit-mult(digit-sum(prime)) of each prime <= p.

This page as a plain text file.
%I A242479 #9 May 21 2014 00:22:15
%S A242479 105701,160309,927137,927149,964973,2329081,2329097,2329549,2384587,
%T A242479 3228733,3237527,3242851,7338377,7338431,7338557,7338719
%N A242479 Primes p such that, in base 17, p = the cumulative sum of the digit-mult(digit-sum(prime)) of each prime <= p.
%F A242479 The function digit-mult(n) multiplies all digits d of n, where d > 0. For example, digit-mult(1230) = 1 * 2 * 3 = 6. Therefore, in base 17, digit-mult(digit-sum(9999)) = digit-mult(22) = 2 * 2 = 4 (22 in base 17 = 36 in base 10).
%e A242479 105701 = digit-mult(digit-sum(2)) + digit-mult(digit-sum(3)) + ... digit-mult(digit-sum(148CC)) = digit-mult(2) + digit-mult(3) + ... digit-mult(23) = 2 + 3 + ... 2*3. Note that 148CC and 23 in base 17 = 105701 and 37 in base 10.
%Y A242479 Cf. A240886.
%K A242479 nonn,base
%O A242479 1,1
%A A242479 _Anthony Sand_, May 16 2014