This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242497 #22 Sep 04 2023 12:25:52 %S A242497 3,4,5,13,14,15,51,52,53,193,194,195,723,724,725,2701,2702,2703,10083, %T A242497 10084,10085,37633,37634,37635,140451,140452,140453,524173,524174, %U A242497 524175,1956243,1956244,1956245,7300801,7300802,7300803,27246963,27246964,27246965 %N A242497 Sides of (Heronian) triangles where sides are consecutive integers and area is an integer. %C A242497 Let the edge lengths of the triangle be 2x-1, 2x, 2x+1 so that area = sqrt{3x * x * (x-1) * (x+1)} and we need x^2 - 1 to be of shape 3y^2. That is, x/y is an even rank convergent to the continued fraction of sqrt(3) and x is A001075. %C A242497 The intermediate length sides are given by A003500(n), n >= 1. Note that A003500(0) = 2 corresponds to the degenerate (Heronian) triangle with sides {1, 2, 3} and area 0. - _Daniel Forgues_, May 28 2014 %D A242497 Nakane Genkei (Nakane the Elder), Shichijo Beki Yenshiki, 1691. %H A242497 Harvey P. Dale, <a href="/A242497/b242497.txt">Table of n, a(n) for n = 1..1000</a> %H A242497 David Eugene Smith and Yoshio Mikami, <a href="http://books.google.com/books?id=J1YNAAAAYAAJ&pg=PA168&lpg=PA168&dq=%22nakane+solves+it%22&source=bl&ots=SXl7poRJQr&sig=-PH4VG63ZAPk-YXus2EjEE5TeS0&hl=en&sa=X&ei=yqSLUfHtA67b4AO42oC4Cg&ved=0CBgQ6AEwAA#v=onepage&q=%22nakane%20solves%20it%22&f=false">A history of Japanese mathematics</a>, Dover, 2004, p. 168. %H A242497 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,4,4,4,-1,-1,-1). %F A242497 G.f.: (-3*x^7 - 5*x^6 - 6*x^5 + 4*x^4 + 10*x^3 + 12*x^2 + 7*x + 3)/ ((1+x+x^2)*(1-4*x^3+x^6)). - _R. J. Mathar_, May 30 2023 %t A242497 LinearRecurrence[{-1,-1,4,4,4,-1,-1,-1},{3,4,5,13,14,15,51,52},40] (* _Harvey P. Dale_, May 04 2021 *) %o A242497 (PARI) Vec((-3*x^7 - 5*x^6 - 6*x^5 + 4*x^4 + 10*x^3 + 12*x^2 + 7*x + 3)/(x^8 + x^7+ x^6 - 4*x^5 - 4*x^4 - 4*x^3 + x^2 + x + 1)+O(x^99)) %Y A242497 A016064 is the main entry for this sequence. %K A242497 nonn,easy %O A242497 1,1 %A A242497 _R. K. Guy_ and _Charles R Greathouse IV_, May 16 2014