cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242497 Sides of (Heronian) triangles where sides are consecutive integers and area is an integer.

This page as a plain text file.
%I A242497 #22 Sep 04 2023 12:25:52
%S A242497 3,4,5,13,14,15,51,52,53,193,194,195,723,724,725,2701,2702,2703,10083,
%T A242497 10084,10085,37633,37634,37635,140451,140452,140453,524173,524174,
%U A242497 524175,1956243,1956244,1956245,7300801,7300802,7300803,27246963,27246964,27246965
%N A242497 Sides of (Heronian) triangles where sides are consecutive integers and area is an integer.
%C A242497 Let the edge lengths of the triangle be 2x-1, 2x, 2x+1 so that area = sqrt{3x * x * (x-1) * (x+1)} and we need x^2 - 1 to be of shape 3y^2.  That is, x/y is an even rank convergent to the continued fraction of sqrt(3) and x is A001075.
%C A242497 The intermediate length sides are given by A003500(n), n >= 1. Note that A003500(0) = 2 corresponds to the degenerate (Heronian) triangle with sides {1, 2, 3} and area 0. - _Daniel Forgues_, May 28 2014
%D A242497 Nakane Genkei (Nakane the Elder), Shichijo Beki Yenshiki, 1691.
%H A242497 Harvey P. Dale, <a href="/A242497/b242497.txt">Table of n, a(n) for n = 1..1000</a>
%H A242497 David Eugene Smith and Yoshio Mikami, <a href="http://books.google.com/books?id=J1YNAAAAYAAJ&amp;pg=PA168&amp;lpg=PA168&amp;dq=%22nakane+solves+it%22&amp;source=bl&amp;ots=SXl7poRJQr&amp;sig=-PH4VG63ZAPk-YXus2EjEE5TeS0&amp;hl=en&amp;sa=X&amp;ei=yqSLUfHtA67b4AO42oC4Cg&amp;ved=0CBgQ6AEwAA#v=onepage&amp;q=%22nakane%20solves%20it%22&amp;f=false">A history of Japanese mathematics</a>, Dover, 2004, p. 168.
%H A242497 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,4,4,4,-1,-1,-1).
%F A242497 G.f.: (-3*x^7 - 5*x^6 - 6*x^5 + 4*x^4 + 10*x^3 + 12*x^2 + 7*x + 3)/ ((1+x+x^2)*(1-4*x^3+x^6)). - _R. J. Mathar_, May 30 2023
%t A242497 LinearRecurrence[{-1,-1,4,4,4,-1,-1,-1},{3,4,5,13,14,15,51,52},40] (* _Harvey P. Dale_, May 04 2021 *)
%o A242497 (PARI) Vec((-3*x^7 - 5*x^6 - 6*x^5 + 4*x^4 + 10*x^3 + 12*x^2 + 7*x + 3)/(x^8 + x^7+ x^6 - 4*x^5 - 4*x^4 - 4*x^3 + x^2 + x + 1)+O(x^99))
%Y A242497 A016064 is the main entry for this sequence.
%K A242497 nonn,easy
%O A242497 1,1
%A A242497 _R. K. Guy_ and _Charles R Greathouse IV_, May 16 2014