This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242503 #7 May 20 2014 02:42:39 %S A242503 1,0,5,7,15,49,71,196,394,753,1746,3285,6865,14124,27445,56661,111892, %T A242503 222222,446524,876876,1744353,3448783,6782633,13411528,26346074, %U A242503 51799306,101840098,199601828,391637976,767247094,1501758784,2939789022,5747749147,11235696151 %N A242503 Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 5. %C A242503 With offset 10 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -5. %H A242503 Alois P. Heinz, <a href="/A242503/b242503.txt">Table of n, a(n) for n = 5..1000</a> %F A242503 Recurrence (for n>=9): (n-5)*(n-1)*n*(n+10)*(16*n^4 - 40*n^2 - 9991)*a(n) = -800*(n-6)*(n-1)*(n+1)*(n+9)*(2*n-1)*a(n-1) + 2*n*(16*n^7 + 48*n^6 + 280*n^5 - 1920*n^4 - 11691*n^3 - 5023*n^2 - 167795*n + 7975)*a(n-2) + 2*(n-1)*(n+1)*(2*n-1)*(16*n^5 + 48*n^4 - 16*n^3 + 292*n^2 - 9645*n + 7200)*a(n-3) - (n-4)*n*(n+1)^2*(16*n^4 + 64*n^3 + 56*n^2 - 16*n - 10015)*a(n-4). - _Vaclav Kotesovec_, May 20 2014 %Y A242503 Column k=5 of A242498. %K A242503 nonn %O A242503 5,3 %A A242503 _Alois P. Heinz_, May 16 2014