This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242505 #8 May 20 2014 02:44:02 %S A242505 1,0,7,9,28,81,139,405,815,1771,4092,8173,18019,37609,77246,163345, %T A242505 331968,683631,1400777,2832362,5770056,11640546,23446366,47227530, %U A242505 94582628,189487950,378658714,754877809,1504215522,2990469337,5939101301,11782590061,23340439078 %N A242505 Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 7. %C A242505 With offset 14 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -7. %H A242505 Alois P. Heinz, <a href="/A242505/b242505.txt">Table of n, a(n) for n = 7..1000</a> %F A242505 Recurrence (for n>=11): (n-7)*n*(n+1)*(n+14)*(16*n^4 + 64*n^3 + 56*n^2 - 16*n - 38431)*a(n) = -1568*(n-8)*n*(n+2)*(n+13)*(2*n+1)*a(n-1) + 2*(n+1)*(16*n^7 + 160*n^6 + 1192*n^5 + 472*n^4 - 49083*n^3 - 168912*n^2 - 1534048*n - 1379196)*a(n-2) + 2*n*(n+2)*(2*n+1)*(16*n^5 + 128*n^4 + 336*n^3 + 1076*n^2 - 36101*n - 8729)*a(n-3) - (n-4)*(n+1)*(n+2)*(n+3)*(16*n^4 + 128*n^3 + 344*n^2 + 352*n - 38311)*a(n-4). - _Vaclav Kotesovec_, May 20 2014 %Y A242505 Column k=7 of A242498. %K A242505 nonn %O A242505 7,3 %A A242505 _Alois P. Heinz_, May 16 2014