cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242507 Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 9.

This page as a plain text file.
%I A242507 #7 May 20 2014 02:45:17
%S A242507 1,0,9,11,45,121,243,726,1509,3601,8385,17836,40873,87633,188855,
%T A242507 409116,859674,1827160,3832786,7981398,16644666,34362355,70866846,
%U A242507 145637147,297814569,608309130,1237764177,2512564769,5090761029,10286177231,20750532587,41778968976
%N A242507 Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 9.
%C A242507 With offset 18 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -9.
%H A242507 Alois P. Heinz, <a href="/A242507/b242507.txt">Table of n, a(n) for n = 9..1000</a>
%F A242507 Recurrence (for n>=13): (n-9)*(n+1)*(n+2)*(n+18)*(16*n^4 + 128*n^3 + 344*n^2 + 352*n - 104871)*a(n) = -2592*(n-10)*(n+1)*(n+3)*(n+17)*(2*n+3)*a(n-1) + 2*(n+2)*(16*n^7 + 272*n^6 + 2872*n^5 + 10928*n^4 - 103259*n^3 - 795505*n^2 - 7964385*n - 13572711)*a(n-2) + 2*(n+1)*(n+3)*(2*n+3)*(16*n^5 + 208*n^4 + 1008*n^3 + 3524*n^2 - 96349*n - 123786)*a(n-3) - (n-4)*(n+2)*(n+3)*(n+5)*(16*n^4 + 192*n^3 + 824*n^2 + 1488*n - 104031)*a(n-4). - _Vaclav Kotesovec_, May 20 2014
%Y A242507 Column k=9 of A242498.
%K A242507 nonn
%O A242507 9,3
%A A242507 _Alois P. Heinz_, May 16 2014