cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242508 Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 10.

This page as a plain text file.
%I A242508 #7 May 20 2014 02:45:56
%S A242508 1,0,10,12,55,144,311,936,1989,4928,11557,25340,59025,128576,283100,
%T A242508 620976,1327258,2862528,6080645,12845064,27102284,56625624,118144679,
%U A242508 245331648,507035957,1045854240,2148159266,4400962876,8993987459,18326508928,37269909849
%N A242508 Number of compositions of n, where the difference between the number of odd parts and the number of even parts is 10.
%C A242508 With offset 20 number of compositions of n, where the difference between the number of odd parts and the number of even parts is -10.
%H A242508 Alois P. Heinz, <a href="/A242508/b242508.txt">Table of n, a(n) for n = 10..1000</a>
%F A242508 Recurrence (for n>=14): (n-10)*(n+20)*(2*n+3)*(2*n+5)*(n^4 + 10*n^3 + 35*n^2 + 50*n - 9976)*a(n) = -400*(n-11)*(n+2)*(n+19)*(2*n+3)*(2*n+7)*a(n-1) + 2*(2*n + 5)*(2*n^7 + 41*n^6 + 500*n^5 + 2585*n^4 - 16152*n^3 - 177396*n^2 - 1963520*n - 4094400)*a(n-2) + 2*(n+2)*(2*n+3)*(2*n+7)*(2*n^5 + 31*n^4 + 183*n^3 + 709*n^2 - 18145*n - 33100)*a(n-3) - (n-4)*(n+6)*(2*n+5)*(2*n+7)*(n^4 + 14*n^3 + 71*n^2 + 154*n - 9880)*a(n-4). - _Vaclav Kotesovec_, May 20 2014
%Y A242508 Column k=10 of A242498.
%K A242508 nonn
%O A242508 10,3
%A A242508 _Alois P. Heinz_, May 16 2014