A242511 a(n) = number of knight's move paths of minimal length n steps, from origin (0,0) at center of an infinite open chessboard to square (0,0) for n=0; square (2,-1) for n=1; and square (2n-3, (n+1)mod 2) for n>=2.
1, 1, 2, 6, 28, 100, 330, 1050, 3024, 8736, 23220, 62700, 158004, 406692, 986986, 2452450, 5788640, 14002560, 32357052, 76640148, 174174520, 405623400, 909582212, 2089064516, 4633556448, 10519464000, 23120533800, 51977741400, 113365499940, 252725219460, 547593359850, 1211884139250, 2610998927040, 5741708459520, 12309472580460, 26917328938500, 57457069777800, 125016198060600, 265832233972140, 575824335603660, 1220234181784800
Offset: 0
Examples
For n=0 there is a(0)=1 path from (0,0) to (0,0) with 0 step. For n=1 there is a(1)=1 path from (0,0) to (2,-1) with 1 step. For n=2 there are a(2)=2 paths from (0,0) to (1,1) with 2 steps: (0,0) -> (2,-1) -> (1,1) and (0,0) -> (-1,2) -> (1,1). For n=3 there are a(3)=6 paths from (0,0) to (3,0) with 3 steps: (0,0)(2,-1)(1,1)(3,0); (0,0)(2,1)(1,-1)(3,0); (0,0)(2,-1)(4,-2)(3,0); (0,0)(2,1)(4,2)(3,0); (0,0)(-1,-2)(1,-1)(3,0); (0,0)(-1,2)(1,1)(3,0).
References
- Fred Lunnon, Knights in Daze, to appear.
Links
Programs
-
Magma
[ Max(1, Binomial(d, d div 2 - 1)/6 * // axis-hugging path ( /*if*/ IsEven(d) select (d^2-2*d+6)*(d^2+8)/(d+4) else (d-1)*(d^2-2*d+15) /*end if*/ )) : d in [0..20] ];
-
Maple
A242511 := proc(n) local a; if n <=1 then return 1; end if ; a := binomial(n,floor(n/2)-1)/6 ; if type(n,'even') then a*(n^2-2*n+6)*(8+n^2)/(n+4) ; else a*(n-1)*(n^2-2*n+15) ; end if ; end proc: # R. J. Mathar, May 17 2014
-
Mathematica
q := (1 - 2 x)^(7/2) (1 + 2 x)^(5/2); CoefficientList[Series[(-10 + 10 x + 127 x^2 - 111 x^3 - 576 x^4 + 410 x^5 + 1072 x^6 - 528 x^7 - 624 x^8 + 144 x^9 + q (10 + 10 x - 7 x^2 - 3 x^3 + x^4 + x^5))/(q*x^4), {x, 0, 20}],x] (* Benedict W. J. Irwin, Oct 20 2016 *)
Formula
For n>=2, a(n) = binomial(n,floor(n/2)-1)/6 *
( (n^2-2*n+6)*(n^2+8)/(n+4) if n even, (n-1)*(n^2-2*n+15) if n odd ).
G.f.: (-10 + 10*x + 127*x^2 - 111*x^3 - 576*x^4 + 410*x^5 + 1072*x^6 - 528*x^7 - 624*x^8 + 144*x^9 + q*(10 + 10*x - 7*x^2 - 3*x^3 + x^4 + x^5))/(q*x^4), where q = sqrt((1 - 2*x)^7*(1 + 2*x)^5). - Benedict W. J. Irwin, Oct 20 2016
Comments