cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242511 a(n) = number of knight's move paths of minimal length n steps, from origin (0,0) at center of an infinite open chessboard to square (0,0) for n=0; square (2,-1) for n=1; and square (2n-3, (n+1)mod 2) for n>=2.

Original entry on oeis.org

1, 1, 2, 6, 28, 100, 330, 1050, 3024, 8736, 23220, 62700, 158004, 406692, 986986, 2452450, 5788640, 14002560, 32357052, 76640148, 174174520, 405623400, 909582212, 2089064516, 4633556448, 10519464000, 23120533800, 51977741400, 113365499940, 252725219460, 547593359850, 1211884139250, 2610998927040, 5741708459520, 12309472580460, 26917328938500, 57457069777800, 125016198060600, 265832233972140, 575824335603660, 1220234181784800
Offset: 0

Views

Author

Fred Lunnon, May 16 2014 and May 18 2014

Keywords

Comments

The squares concerned constitute an infinite, locally fully concertinaed knight's path from the origin, which hugs the axis y=0 and is minimal to each square.

Examples

			For n=0 there is a(0)=1 path from (0,0) to (0,0) with 0 step.
For n=1 there is a(1)=1 path from (0,0) to (2,-1) with 1 step.
For n=2 there are a(2)=2 paths from (0,0) to (1,1) with 2 steps:
  (0,0) -> (2,-1) -> (1,1) and (0,0) -> (-1,2) -> (1,1).
For n=3 there are a(3)=6 paths from (0,0) to (3,0) with 3 steps:
  (0,0)(2,-1)(1,1)(3,0); (0,0)(2,1)(1,-1)(3,0); (0,0)(2,-1)(4,-2)(3,0);
  (0,0)(2,1)(4,2)(3,0); (0,0)(-1,-2)(1,-1)(3,0); (0,0)(-1,2)(1,1)(3,0).
		

References

  • Fred Lunnon, Knights in Daze, to appear.

Crossrefs

Programs

  • Magma
    [ Max(1, Binomial(d, d div 2 - 1)/6 * // axis-hugging path
      ( /*if*/ IsEven(d) select (d^2-2*d+6)*(d^2+8)/(d+4)
      else (d-1)*(d^2-2*d+15) /*end if*/ )) : d in [0..20] ];
  • Maple
    A242511 := proc(n)
        local a;
        if n <=1 then
            return 1;
        end if ;
        a := binomial(n,floor(n/2)-1)/6 ;
        if type(n,'even') then
            a*(n^2-2*n+6)*(8+n^2)/(n+4) ;
        else
            a*(n-1)*(n^2-2*n+15) ;
        end if ;
    end proc: # R. J. Mathar, May 17 2014
  • Mathematica
    q := (1 - 2 x)^(7/2) (1 + 2 x)^(5/2); CoefficientList[Series[(-10 + 10 x + 127 x^2 - 111 x^3 - 576 x^4 + 410 x^5 + 1072 x^6 - 528 x^7 - 624 x^8 + 144 x^9 + q (10 + 10 x - 7 x^2 - 3 x^3 + x^4 + x^5))/(q*x^4), {x, 0, 20}],x] (* Benedict W. J. Irwin, Oct 20 2016 *)

Formula

For n>=2, a(n) = binomial(n,floor(n/2)-1)/6 *
( (n^2-2*n+6)*(n^2+8)/(n+4) if n even, (n-1)*(n^2-2*n+15) if n odd ).
G.f.: (-10 + 10*x + 127*x^2 - 111*x^3 - 576*x^4 + 410*x^5 + 1072*x^6 - 528*x^7 - 624*x^8 + 144*x^9 + q*(10 + 10*x - 7*x^2 - 3*x^3 + x^4 + x^5))/(q*x^4), where q = sqrt((1 - 2*x)^7*(1 + 2*x)^5). - Benedict W. J. Irwin, Oct 20 2016