This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242518 #23 May 22 2025 10:21:38 %S A242518 201829,2739721,6108679,7883329,9260131,9309721,9917389,14488249, %T A242518 15386491,15876481,16685299,16967191,18145279,20566969,20869129, %U A242518 21150991,23194909,25510189,28406929,34669909,35039311,36795169,37912141,39083521,39805639 %N A242518 Primes p for which p^n - 2 is prime for n = 1, 3, 5 and 7. %C A242518 This is a subsequence of A242517. %H A242518 Harvey P. Dale, <a href="/A242518/b242518.txt">Table of n, a(n) for n = 1..150</a> (first 100 terms from Abhiram R Davesh) %e A242518 p = 201829 (prime) %e A242518 p - 2 = 201827 (prime) %e A242518 p^3 - 2 = 8221493263045787 (prime) %e A242518 p^5 - 2 = 334902077869420623790640147 (prime) %e A242518 p^7 - 2 = 13642217803107967058507788317851080907 (prime) %t A242518 Select[Prime[Range[25*10^5]],AllTrue[#^{1,3,5,7}-2,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Dec 26 2015 *) %o A242518 (Python) %o A242518 import sympy %o A242518 n=2 %o A242518 while n>1: %o A242518 n1=n-2 %o A242518 n2=((n**3)-2) %o A242518 n3=((n**5)-2) %o A242518 n4=((n**7)-2) %o A242518 ##.Check if n1, n2, n3 and n4 are also primes %o A242518 if sympy.ntheory.isprime(n1)== True and sympy.ntheory.isprime(n2)== True and sympy.ntheory.isprime(n3)== True and sympy.ntheory.isprime(n4)== True: %o A242518 print(n, " , " , n1, " , ", n2, " , ", n3, " , ", n4) %o A242518 n=sympy.ntheory.nextprime(n) %Y A242518 Cf. A242517, A240126, A001359, A006512. %K A242518 nonn %O A242518 1,1 %A A242518 _Abhiram R Devesh_, May 17 2014