This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242520 #27 Oct 23 2018 03:03:10 %S A242520 1,1,2,3,27,165,676,3584,19108,80754,386776,1807342,8218582,114618650, %T A242520 1410831012,12144300991,126350575684 %N A242520 Number of cyclic arrangements of S={1,2,...,2n} such that the difference between any two neighbors is 3^k for some k=0,1,2,... %C A242520 a(n)=NPC(2n;S;P) is the count of all neighbor-property cycles for a specific set S of 2n elements and a specific pair-property P. For more details, see the link and A242519. %C A242520 In this particular instance of NPC(n;S;P), all the terms with odd cycle lengths are necessarily zero. %H A242520 S. Sykora, <a href="http://dx.doi.org/10.3247/SL5Math14.002">On Neighbor-Property Cycles</a>, <a href="http://ebyte.it/library/Library.html#math">Stan's Library</a>, Volume V, 2014. %e A242520 The two such cycles of length n=6 are: %e A242520 C_1={1,2,3,6,5,4}, C_2={1,2,5,6,3,4}. %e A242520 The first and last of the 27 such cycles of length n=10 are: %e A242520 C_1={1,2,3,4,5,6,7,8,9,10}, C_27={1,4,7,8,5,2,3,6,9,10}. %t A242520 A242520[n_] := Count[Map[lpf, Map[j1f, Permutations[Range[2, 2 n]]]], 0]/2; %t A242520 j1f[x_] := Join[{1}, x, {1}]; %t A242520 lpf[x_] := Length[Select[Abs[Differences[x]], ! MemberQ[t, #] &]]; %t A242520 t = Table[3^k, {k, 0, 10}]; %t A242520 Join[{1}, Table[A242520[n], {n, 2, 5}]] %t A242520 (* OR, a less simple, but more efficient implementation. *) %t A242520 A242520[n_, perm_, remain_] := Module[{opt, lr, i, new}, %t A242520 If[remain == {}, %t A242520 If[MemberQ[t, Abs[First[perm] - Last[perm]]], ct++]; %t A242520 Return[ct], %t A242520 opt = remain; lr = Length[remain]; %t A242520 For[i = 1, i <= lr, i++, %t A242520 new = First[opt]; opt = Rest[opt]; %t A242520 If[! MemberQ[t, Abs[Last[perm] - new]], Continue[]]; %t A242520 A242520[n, Join[perm, {new}], %t A242520 Complement[Range[2, 2 n], perm, {new}]]; %t A242520 ]; %t A242520 Return[ct]; %t A242520 ]; %t A242520 ]; %t A242520 t = Table[3^k, {k, 0, 10}]; %t A242520 Join[{1}, Table[ct = 0; A242520[n, {1}, Range[2, 2 n]]/2, {n, 2, 8}]] (* _Robert Price_, Oct 22 2018 *) %o A242520 (C++) See the link. %Y A242520 Cf. A242519, A242521, A242522, A242523, A242524, A242525, A242526, A242527, A242528, A242529, A242530, A242531, A242532, A242533, A242534. %K A242520 nonn,hard,more %O A242520 1,3 %A A242520 _Stanislav Sykora_, May 27 2014 %E A242520 a(14)-a(17) from _Andrew Howroyd_, Apr 05 2016