This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242528 #16 Oct 23 2018 03:03:02 %S A242528 0,0,0,0,0,0,0,0,0,0,0,2,4,18,13,62,8,133,225,209,32,2644,4462,61341, %T A242528 113986,750294,176301,7575912,3575686,7705362,36777080,108638048, %U A242528 97295807 %N A242528 Number of cyclic arrangements of {0,1,...,n-1} such that both the difference and the sum of any two neighbors are prime. %C A242528 a(n)=NPC(n;S;P) is the count of all neighbor-property cycles for a specific set S of n elements and a specific pair-property P. For more details, see the link and A242519. %C A242528 In this case the set is S={0 through n-1}. For the same pair-property P but the set S={1 through n}, see A227050. %H A242528 S. Sykora, <a href="http://dx.doi.org/10.3247/SL5Math14.002">On Neighbor-Property Cycles</a>, <a href="http://ebyte.it/library/Library.html#math">Stan's Library</a>, Volume V, 2014. %e A242528 For n=12 (the first n for which a(n)>0) there are two such cycles: %e A242528 C_1={0, 5, 2, 9, 4, 1, 6, 11, 8, 3, 10, 7}, %e A242528 C_2={0, 7, 10, 3, 8, 5, 2, 9, 4, 1, 6, 11}. %t A242528 A242528[n_] := %t A242528 Count[Map[lpf, Map[j0f, Permutations[Range[n - 1]]]], 0]/2; %t A242528 j0f[x_] := Join[{0}, x, {0}]; %t A242528 lpf[x_] := Length[ %t A242528 Join[Select[asf[x], ! PrimeQ[#] &], %t A242528 Select[Differences[x], ! PrimeQ[#] &]]]; %t A242528 asf[x_] := Module[{i}, Table[x[[i]] + x[[i + 1]], {i, Length[x] - 1}]]; %t A242528 Table[A242528[n], {n, 1, 8}] %t A242528 (* OR, a less simple, but more efficient implementation. *) %t A242528 A242528[n_, perm_, remain_] := Module[{opt, lr, i, new}, %t A242528 If[remain == {}, %t A242528 If[PrimeQ[First[perm] - Last[perm]] && %t A242528 PrimeQ[First[perm] + Last[perm]], ct++]; %t A242528 Return[ct], %t A242528 opt = remain; lr = Length[remain]; %t A242528 For[i = 1, i <= lr, i++, %t A242528 new = First[opt]; opt = Rest[opt]; %t A242528 If[! (PrimeQ[Last[perm] - new] && PrimeQ[Last[perm] + new]), %t A242528 Continue[]]; %t A242528 A242528[n, Join[perm, {new}], %t A242528 Complement[Range[n - 1], perm, {new}]]; %t A242528 ]; %t A242528 Return[ct]; %t A242528 ]; %t A242528 ]; %t A242528 Table[ct = 0; A242528[n, {0}, Range[n - 1]]/2, {n, 1, 18}] %t A242528 (* _Robert Price_, Oct 22 2018 *) %o A242528 (C++) See the link. %Y A242528 Cf. A227050, A242519, A242520, A242521, A242522, A242523, A242524, A242525, A242526, A242527, A242529, A242530, A242531, A242532, A242533, A242534. %K A242528 nonn,hard,more %O A242528 1,12 %A A242528 _Stanislav Sykora_, May 30 2014 %E A242528 a(29)-a(33) from _Fausto A. C. Cariboni_, May 20 2017