A242543 Number of length n+3 0..2 arrays with no four elements in a row with pattern aabb (possibly a=b) and new values 0..2 introduced in 0..2 order.
12, 32, 88, 242, 660, 1800, 4920, 13448, 36736, 100352, 274176, 749088, 2046528, 5591168, 15275392, 41733248, 114017280, 311500800, 851036160, 2325074432, 6352221184, 17354590208, 47413622784, 129536428032, 353900101632
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..0....1....1....1....1....1....1....1....0....0....1....1....0....0....1....1 ..1....1....0....2....0....0....1....1....0....1....0....0....1....1....0....0 ..2....1....0....1....0....2....2....0....1....2....0....2....0....0....1....2 ..1....2....0....0....2....0....0....1....2....0....1....0....0....0....0....1 ..1....1....1....1....0....1....2....0....2....0....2....0....0....2....0....1 ..0....2....0....2....1....1....0....0....1....1....1....1....1....1....0....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +4*a(n-3) +4*a(n-4).
Empirical: G.f.: -2*x*(6+4*x+12*x^2+9*x^3) / ( (2*x^2+2*x-1)*(2*x^2+1) ). - R. J. Mathar, May 18 2014
Comments