A242544 Number of length n+3 0..3 arrays with no four elements in a row with pattern aabb (possibly a=b) and new values 0..3 introduced in 0..3 order.
13, 42, 150, 554, 2072, 7808, 29536, 111878, 423969, 1607058, 6092367, 23097242, 87566957, 331989206, 1258663594, 4771951574, 18091832688, 68591328768, 260049450816, 985922294306, 3737915147525, 14171512153838, 53728281674119
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....0....1....1....0....1....1....1....1....1....1....1....1....1....1 ..2....2....1....1....1....1....1....1....1....0....1....2....2....2....2....2 ..1....1....2....0....2....0....2....2....2....0....2....3....1....0....1....3 ..2....1....3....2....0....2....0....3....3....2....1....0....2....0....0....1 ..2....1....0....0....1....3....0....3....3....1....3....2....0....3....1....0 ..1....2....3....0....2....1....3....0....3....2....3....2....3....1....1....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) -3*a(n-2) +10*a(n-3) -2*a(n-4) -12*a(n-5) -9*a(n-6) -18*a(n-7) -9*a(n-8).
Empirical: G.f.: -x*(-13+10*x-21*x^2+50*x^3+88*x^4+78*x^5+99*x^6+42*x^7) / ( (x^2+x-1)*(3*x^2+3*x-1)*(3*x^2+1)*(x^2+1) ). - R. J. Mathar, May 18 2014
Comments