This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242553 #12 Dec 26 2024 18:58:21 %S A242553 1,1,10,1,6,5,12,13,16,3,24,7,2,3,8,9,4,17,4,7,2,3,20,7,8,19,10,3,10, %T A242553 19,14,17,32,11,8,25,6,25,40,7,10,43,16,5,68,7,30,5,8,19,58,17,26,17, %U A242553 2,11,10,3,4,49,6,71,22,15,14,47,30,9,2,19,6,19,6,5,28,13,2 %N A242553 Least number k such that n^8 + k^8 is prime. %C A242553 If a(n) = 1, then n is in A006314. %e A242553 10^8+1^8 = 100000001 is not prime. 10^8+2^8 = 100000256 is not prime. 10^8+3^8 = 100006561 is prime. Thus, a(10) = 3. %t A242553 lnk[n_]:=Module[{c=n^8,k=1},While[CompositeQ[c+k^8],k++];k]; Array[lnk,80] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Jan 12 2020 *) %o A242553 (Python) %o A242553 import sympy %o A242553 from sympy import isprime %o A242553 def a(n): %o A242553 for k in range(10**4): %o A242553 if isprime(n**8+k**8): %o A242553 return k %o A242553 n = 1 %o A242553 while n < 100: %o A242553 print(a(n)) %o A242553 n += 1 %o A242553 (PARI) a(n)=for(k=1,oo,if(ispseudoprime(n^8+k^8),return(k))); %Y A242553 Cf. A069003, A006314. %K A242553 nonn %O A242553 1,3 %A A242553 _Derek Orr_, May 17 2014