This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242555 #14 Dec 26 2024 19:00:35 %S A242555 1,29,40,33,34,131,50,9,8,11,10,13,12,97,166,221,200,13,10,61,176,23, %T A242555 22,65,94,151,352,87,2,1,38,39,4,5,48,137,18,11,4,3,60,55,40,9,106,33, %U A242555 10,29,134,7,44,33,50,1,38,5,148,37,2,41,10,11,94,75,4,5,100,5,22 %N A242555 Least number k such that k^32 + n^32 is prime. %C A242555 If a(n) = 1, then n is in A006315. %t A242555 lnk[n_]:=Module[{k=1,n32=n^32},While[!PrimeQ[n32+k^32],k++];k]; Array[ lnk,70] (* _Harvey P. Dale_, Apr 26 2018 *) %o A242555 (Python) %o A242555 import sympy %o A242555 from sympy import isprime %o A242555 def a(n): %o A242555 for k in range(10**4): %o A242555 if isprime(n**32+k**32): %o A242555 return k %o A242555 n = 1 %o A242555 while n < 100: %o A242555 print(a(n)) %o A242555 n += 1 %o A242555 (PARI) a(n)=for(k=1,oo,if(ispseudoprime(n^32+k^32),return(k))); %Y A242555 Cf. A069003, A006315. %K A242555 nonn %O A242555 1,2 %A A242555 _Derek Orr_, May 17 2014