A242562 Primes p such that 1000p+1, 1000p+3, 1000p+7 and 1000p+9 are prime.
13, 1447, 5527, 28201, 36217, 75079, 81157, 95911, 187423, 188677, 202327, 210643, 248077, 263323, 282589, 283267, 423043, 466897, 472597, 478189, 478603, 631273, 640261, 695749, 730111, 736279, 806929, 808021, 917641, 964303, 1018177, 1026547, 1064263, 1108489, 1150861
Offset: 1
Keywords
Examples
130001, 130003, 130007 and 130009 are all prime. Thus 13 is a member of this sequence.
Programs
-
PARI
for(n=1,10^5,s=prime(n);if(ispseudoprime(1000*s+1) && ispseudoprime(1000*s+3) && ispseudoprime(1000*s+7) && ispseudoprime(1000*s+9),print(s)));
-
Python
import sympy from sympy import isprime from sympy import prime {print(prime(n)) for n in range(1,10**5) if isprime(1000*prime(n)+1) and isprime(1000*prime(n)+3) and isprime(1000*prime(n)+7) and isprime(1000*prime(n)+9)}