cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242588 Decimal expansion of the expected reciprocal Euclidean distance between two random points in the unit cube.

Original entry on oeis.org

1, 8, 8, 2, 3, 1, 2, 6, 4, 4, 3, 8, 9, 6, 6, 0, 1, 6, 0, 1, 0, 5, 6, 0, 0, 8, 3, 8, 8, 6, 8, 3, 6, 7, 5, 8, 7, 8, 5, 2, 4, 6, 2, 8, 8, 0, 3, 1, 0, 7, 0, 7, 9, 6, 0, 5, 5, 2, 9, 3, 2, 3, 1, 4, 5, 7, 7, 2, 1, 0, 3, 7, 9, 6, 1, 0, 6, 0, 3, 5, 8, 1, 2, 7, 2, 3, 9, 9, 9, 9, 1, 4, 8, 4, 5, 6, 2, 0, 4, 2
Offset: 1

Views

Author

Jean-François Alcover, May 20 2014

Keywords

Examples

			1.88231264438966016010560083886836758785246288...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.1, p. 480.

Crossrefs

Programs

  • Mathematica
    2*(1/5*(Sqrt[2] + 1 - 2*Sqrt[3]) - Log[(Sqrt[2] - 1)*(2 - Sqrt[3])] - Pi/3) // RealDigits[#, 10, 100]& // First

Formula

Integral over a unit cube of 1/sqrt((r1-q1)^2 + (r2-q2)^2 + (r3-q3)^2) dr1 dr2 dr3 dq1 dq2 dq3 = 2*(1/5*(sqrt(2) + 1 - 2*sqrt(3)) - log((sqrt(2) - 1)*(2 - sqrt(3))) - Pi/3).