A242588 Decimal expansion of the expected reciprocal Euclidean distance between two random points in the unit cube.
1, 8, 8, 2, 3, 1, 2, 6, 4, 4, 3, 8, 9, 6, 6, 0, 1, 6, 0, 1, 0, 5, 6, 0, 0, 8, 3, 8, 8, 6, 8, 3, 6, 7, 5, 8, 7, 8, 5, 2, 4, 6, 2, 8, 8, 0, 3, 1, 0, 7, 0, 7, 9, 6, 0, 5, 5, 2, 9, 3, 2, 3, 1, 4, 5, 7, 7, 2, 1, 0, 3, 7, 9, 6, 1, 0, 6, 0, 3, 5, 8, 1, 2, 7, 2, 3, 9, 9, 9, 9, 1, 4, 8, 4, 5, 6, 2, 0, 4, 2
Offset: 1
Examples
1.88231264438966016010560083886836758785246288...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.1, p. 480.
Links
- D. H. Bailey, J. M. Borwein, R. E. Crandall, Advances in the theory of box integrals Math. Comp. 79 (2010), 1839-1866, p. 24.
- Eric Weisstein's MathWorld, Cube Point Picking
Programs
-
Mathematica
2*(1/5*(Sqrt[2] + 1 - 2*Sqrt[3]) - Log[(Sqrt[2] - 1)*(2 - Sqrt[3])] - Pi/3) // RealDigits[#, 10, 100]& // First
Formula
Integral over a unit cube of 1/sqrt((r1-q1)^2 + (r2-q2)^2 + (r3-q3)^2) dr1 dr2 dr3 dq1 dq2 dq3 = 2*(1/5*(sqrt(2) + 1 - 2*sqrt(3)) - log((sqrt(2) - 1)*(2 - sqrt(3))) - Pi/3).