cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242589 Primes p such that p = the cumulative sum of the digit-sum in base 15 of the digit-product in base 4 of each prime < p.

Original entry on oeis.org

5, 19, 37, 43, 97, 107, 6091, 6389, 7121, 21727, 147107, 148151, 148279, 148429, 148469, 172877, 173209, 173741, 2621387, 5642293, 5642321, 8932771, 8981827, 8981879, 9094979, 9095089, 9997783, 10010687, 10010789, 10037749, 10144523, 40179929, 40365217, 40379077, 40379197, 40386811, 40612933
Offset: 1

Views

Author

Anthony Sand, May 20 2014

Keywords

Examples

			5 = digit-sum(digit-mult(2,b=4),b=15) + sum(mult(3,b=4),b=15) = 2 + 3.
19 = digit-sum(digit-mult(2,b=4),b=15) + sum(mult(3,b=4),b=15) + sum(mult(11,b=4),b=15) + sum(mult(13,b=4),b=15) + sum(mult(23,b=4),b=15) + sum(mult(31,b=4),b=15) + sum(mult(101,b=4),b=15) = 2 + 3 + 1 + 3 + 6 + 3 + 1.
		

Crossrefs

Cf. A240886 (similar sequence with digit sums in base 3).

Formula

sum = sum + digit-sum(digit-mult(prime,base=4),base=15). The function digit-mult(n) multiplies all digits d of n, where d > 0. For example, digit-mult(1230) = 1 * 2 * 3 = 6. Therefore, the digit-sum in base 15 of the digit-mult(333) in base 4 = digit-sum(3 * 3 * 3) = digit-sum(1C) = 1 + C = 13. (1C in base 15 = 27 in base 10).