This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242593 #19 Apr 28 2018 17:23:46 %S A242593 1,2,4,6,2,10,4,2,16,10,4,2,26,20,12,4,2,42,40,26,14,4,2,68,76,58,32, %T A242593 16,4,2,110,142,120,78,38,18,4,2,178,260,244,172,100,44,20,4,2,288, %U A242593 470,482,374,232,124,50,22,4,2,466,840,936,784,534,300,150,56,24,4,2,754,1488,1788,1612,1176,726,376,178,62,26,4,2 %N A242593 Triangular array read by rows: T(n,k) is the number of length n words on {B,G} that contain exactly k occurrences of the contiguous substrings BGB or GBG. The substrings are allowed to overlap; n>=0, 0<=k<=max(n-2,0). %C A242593 Equivalently, T(n,k) is the number of ways to arrange n children in a line so that exactly k children are in between two children of opposite gender than their own. Children on the ends of the line cannot be counted as "in between". %C A242593 Row sums = 2^n. %C A242593 Column k=0 is A128588. %H A242593 Alois P. Heinz, <a href="/A242593/b242593.txt">Rows n = 0..150, flattened</a> %F A242593 G.f.: 1/(1 - 2*x - 2*(y-1)*x^3/(1 - (y-1)*x - (y-1)*x^2) ). %e A242593 Triangle T(n,k) begins: %e A242593 1; %e A242593 2; %e A242593 4; %e A242593 6, 2; %e A242593 10, 4, 2; %e A242593 16, 10, 4, 2; %e A242593 26, 20, 12, 4, 2; %e A242593 42, 40, 26, 14, 4, 2; %e A242593 68, 76, 58, 32, 16, 4, 2; %e A242593 110, 142, 120, 78, 38, 18, 4, 2, %e A242593 178, 260, 244, 172, 100, 44, 20, 4, 2; %e A242593 T(4,1) = 4 because we have: BBGB, BGBB, GBGG, GGBG. %e A242593 T(4,2) = 2 because we have: BGBG, GBGB. %p A242593 b:= proc(n, t) option remember; `if`(n=0, 1, expand( %p A242593 b(n-1, [4, 3, 4, 4, 3][t])*`if`(t=5, x, 1)+ %p A242593 b(n-1, [2, 2, 5, 5, 2][t])*`if`(t=3, x, 1))) %p A242593 end: %p A242593 T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n, 1)): %p A242593 seq(T(n), n=0..16); # _Alois P. Heinz_, May 18 2014 %t A242593 nn=10;sol=Solve[{A==va(z^3+z^2A+z B),B==va(z^3+z^2 B + z A)},{A,B}]; Fz[z_,y_]:=Simplify[1/(1-2z-A-B)/.sol/.va->y-1]; Map[Select[#,#>0&]&, Level[CoefficientList[Series[Fz[z,y],{z,0,nn}],{z,y}],{2}]]//Grid %Y A242593 Cf. A128588. %K A242593 nonn,tabf %O A242593 0,2 %A A242593 _Geoffrey Critzer_, May 18 2014