A242598 Triangle read by rows: T(n,k) is the coefficient A_k in the transformation of 1 + x + x^2 + ... + x^n to the polynomial A_k*(x-k)^k for 0 <= k <= n.
1, 2, 1, 2, 5, 1, 2, 14, 10, 1, 2, 30, 58, 17, 1, 2, 55, 258, 167, 26, 1, 2, 91, 978, 1247, 386, 37, 1, 2, 140, 3330, 7862, 4306, 772, 50, 1, 2, 204, 10498, 44150, 40146, 11972, 1394, 65, 1, 2, 285, 31234, 227858, 330450, 153722, 28610, 2333, 82, 1, 2, 385, 88834, 1102658, 2480850, 1728722, 482210, 61133, 3682, 101, 1
Offset: 0
Examples
1; 2, 1; 2, 5, 1; 2, 14, 10, 1; 2, 30, 58, 17, 1; 2, 55, 258, 167, 26, 1; 2, 91, 978, 1247, 386, 37, 1; 2, 140, 3330, 7862, 4306, 772, 50, 1; 2, 204, 10498, 44150, 40146, 11972, 1394, 65, 1; 2, 285, 31234, 227858, 330450, 153722, 28610, 2333, 82, 1; 2, 385, 88834, 1102658, 2480850, 1728722, 482210, 61133, 3682, 101, 1
Programs
-
PARI
for(n=0,20,for(k=0,n,if(!k,if(n,print1(2,", "));if(!n,print1(1,", ")));if(k,print1(sum(i=1,n,(k^(i-k)*i*binomial(i,k)))/k,", "))))
Formula
T(n,1) = n*(2*n+1)*(n+1)/6 for n > 0.
T(n,n-1) = n^2 + 1 for n > 0.
Rows sum to SUM{k=0..n} A138911(k).
Comments