A242600 Decimal expansion of -dilog(phi) = -polylog(2, 1-phi) with phi = (1 + sqrt(5))/2.
5, 4, 2, 1, 9, 1, 2, 1, 6, 4, 5, 0, 6, 9, 3, 3, 7, 8, 3, 4, 0, 5, 0, 1, 5, 3, 1, 0, 4, 2, 6, 4, 3, 6, 9, 5, 6, 7, 9, 3, 7, 6, 7, 8, 5, 4, 5, 8, 0, 6, 9, 9, 3, 9, 6, 8, 6, 5, 7, 2, 6, 7, 7, 4, 0, 3, 1, 0, 5, 3, 1, 5, 3, 7, 7, 7, 9, 9, 4, 4, 3, 0, 4, 0, 9, 2, 4, 2, 8, 6, 7, 0, 4, 7, 0, 9, 2, 8, 4, 5, 9, 3, 7, 3, 0, 1, 3
Offset: 1
Examples
0.542191216450693...
References
- L. B. W. Jolley, Summation of Series, Dover, 1961.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Programs
-
Mathematica
RealDigits[PolyLog[2, 1 - GoldenRatio], 10, 120][[1]] (* Amiram Eldar, May 30 2023 *)
Formula
Equals -Sum_{k>=1} (1-phi)^k/k^2 = Pi^2/15 - (log(phi-1)^2)/2, with the golden section phi = (1 + sqrt(5))/2. See the Abramowitz-Stegun link, p. 1004, eqs. 27.7.3 - 27.7.6 with x = phi-1, solving for -dilog(x+1) = -f(1+x), using log(2-phi) = 2*log(phi-1).
Comments