This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242611 #19 Aug 30 2018 22:44:56 %S A242611 0,0,9,4,1,3,9,5,0,2,3,2,4,9,3,0,8,9,7,3,5,1,7,1,9,5,5,3,6,2,3,3,3,0, %T A242611 2,8,9,8,1,5,8,3,1,7,3,7,9,6,6,5,4,3,0,0,3,7,1,1,4,2,3,4,0,2,8,0,2,1, %U A242611 6,1,8,7,3,0,0,0,8,4,5,1,3,3,5,8,7,3,0,9,0,6,2,2,8,1,1,7,2,7,5,4,5,4 %N A242611 Decimal expansion of the sum of the alternating series tau(3), with tau(n) = Sum_{k>0} (-1)^k*log(k)^n/k. %D A242611 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 168. %H A242611 G. C. Greubel, <a href="/A242611/b242611.txt">Table of n, a(n) for n = 0..10000</a> %F A242611 tau(n) = -log(2)^(n+1)/(n+1) + Sum_(k=0..n-1) (binomial(n, k)*log(2)^(n-k)*gamma(k)). %F A242611 tau(3) = gamma*log(2)^3 - (1/4)*log(2)^4 + 3*log(2)^2*gamma(1) + 3*log(2)*gamma(2). %e A242611 0.009413950232493089735171955362333... %t A242611 tau[n_] := -Log[2]^(n+1)/(n+1) + Sum[Binomial[n, k]*Log[2]^(n-k)*StieltjesGamma[k], {k, 0, n-1}]; Join[{0,0},RealDigits[tau[3], 10, 100] // First] %o A242611 (PARI) -suminf(k=1,(-1)^k*log(k)^n/k) \\ _Charles R Greathouse IV_, Mar 10 2016 %Y A242611 Cf. A001620, A082633, A086279, A242494, A242612, A242613. %K A242611 nonn,cons %O A242611 0,3 %A A242611 _Jean-François Alcover_, May 19 2014