This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242613 #19 Aug 30 2018 22:13:46 %S A242613 0,2,4,5,1,4,9,0,7,6,5,6,4,0,9,7,8,2,9,0,7,4,2,2,8,0,0,6,8,6,1,3,7,1, %T A242613 1,0,2,8,7,5,7,0,7,0,9,2,3,7,9,1,5,0,3,7,4,2,9,0,5,1,1,2,7,2,9,8,3,7, %U A242613 8,8,0,0,9,9,7,5,5,3,3,5,8,9,1,5,4,6,6,2,9,4,6,0,6,2,9,3,7,4,1,7,8 %N A242613 Decimal expansion of the sum of the alternating series tau(5), with tau(n) = Sum_{k>0} (-1)^k*log(k)^n/k. %D A242613 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 168. %H A242613 G. C. Greubel, <a href="/A242613/b242613.txt">Table of n, a(n) for n = 0..10000</a> %F A242613 tau(n) = -log(2)^(n+1)/(n+1) + Sum_(k=0..n-1) (binomial(n, k)*log(2)^(n-k)*gamma(k)). %F A242613 tau(5) = gamma*log(2)^5 - (1/6)*log(2)^6 + 5*log(2)^4*gamma(1) + 10*log(2)^3*gamma(2) + 10*log(2)^2*gamma(3) + 5*log(2)*gamma(4). %e A242613 -0.02451490765640978290742280068613711... %t A242613 tau[n_] := -Log[2]^(n+1)/(n+1) + Sum[Binomial[n, k]*Log[2]^(n-k)*StieltjesGamma[k], {k, 0, n-1}]; Join[{0}, RealDigits[tau[5], 10, 100] // First] %Y A242613 Cf. A001620, A082633, A086279, A086280, A086281, A242494, A242611, A242612. %K A242613 nonn,cons %O A242613 0,2 %A A242613 _Jean-François Alcover_, May 19 2014