This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242626 #22 Jan 17 2017 11:22:24 %S A242626 1,1,1,0,1,2,2,2,3,1,2,11,2,3,2,2,14,8,6,6,33,14,11,5,15,43,45,20,44, %T A242626 82,99,25,6,14,74,141,230,41,12,202,260,451,85,26,6,22,351,514,953, %U A242626 148,54,24,766,1049,1798,355,104,18,104,1301,2321,3503,751,194 %N A242626 Number T(n,k) of compositions of n, where k is the difference between the number of odd parts and the number of even parts, both counted without multiplicity; triangle T(n,k), n>=0, read by rows. %C A242626 T(n^2,n) = T(n^2+n,-n) = n! = A000142(n) for n>=0. %H A242626 Alois P. Heinz, <a href="/A242626/b242626.txt">Rows n = 0..500, flattened</a> %e A242626 T(8,-1) = 15: [2,2,2,2], [1,1,2,4], [1,1,4,2], [1,2,1,4], [1,2,4,1], [1,4,1,2], [1,4,2,1], [2,1,1,4], [2,1,4,1], [2,4,1,1], [4,1,1,2], [4,1,2,1], [4,2,1,1], [4,4], [8]. %e A242626 Triangle T(n,k) begins: %e A242626 : n\k : -3 -2 -1 0 1 2 3 ... %e A242626 +-----+------------------------------------ %e A242626 : 0 : 1; %e A242626 : 1 : 1; %e A242626 : 2 : 1, 0, 1; %e A242626 : 3 : 2, 2; %e A242626 : 4 : 2, 3, 1, 2; %e A242626 : 5 : 11, 2, 3; %e A242626 : 6 : 2, 2, 14, 8, 6; %e A242626 : 7 : 6, 33, 14, 11; %e A242626 : 8 : 5, 15, 43, 45, 20; %e A242626 : 9 : 44, 82, 99, 25, 6; %e A242626 : 10 : 14, 74, 141, 230, 41, 12; %e A242626 : 11 : 202, 260, 451, 85, 26; %e A242626 : 12 : 6, 22, 351, 514, 953, 148, 54; %e A242626 : 13 : 24, 766, 1049, 1798, 355, 104; %e A242626 : 14 : 18, 104, 1301, 2321, 3503, 751, 194; %p A242626 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, %p A242626 expand(add(`if`(j=0, 1, x^(2*irem(i, 2)-1))* %p A242626 b(n-i*j, i-1, p+j)/j!, j=0..n/i)))) %p A242626 end: %p A242626 T:= n->(p->seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(b(n$2, 0)): %p A242626 seq(T(n), n=0..20); %t A242626 b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, Expand[Sum[If[j==0, 1, x^(2*Mod[i, 2]-1)]*b[n-i*j, i-1, p+j]/j!, {j, 0, n/i}]]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, Exponent[p, x, Min], Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Jan 17 2017, translated from Maple *) %Y A242626 Columns k=(-5)-5 give: A242836, A242837, A242838, A242839, A242840, A242821, A242841, A242842, A242843, A242844, A242845. %Y A242626 Row sums give A011782. %Y A242626 Cf. A242498 (compositions with multiplicity), A242618 (partitions without multiplicity). %K A242626 nonn,tabf %O A242626 0,6 %A A242626 _Alois P. Heinz_, May 19 2014