This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242635 #17 Dec 28 2020 04:23:36 %S A242635 1,1,3,21,208,2631,40295,724892,14984945,350068993,9121438862, %T A242635 262285777567,8250643190038,281849526767134,10390959086757005, %U A242635 411219228179234026,17387847546353549435,782342249208357483984,37321230268969840324231,1881590248383756833279387 %N A242635 Number of n-length words w over an n-ary alphabet {a_1,...,a_n} such that w contains never more than j consecutive letters a_j for 1<=j<=n. %H A242635 Geoffrey Critzer and Alois P. Heinz, <a href="/A242635/b242635.txt">Table of n, a(n) for n = 0..386</a> %F A242635 a(n) = [x^n] 1/(1-Sum_{i=1..n} v(i)/(1+v(i))) with v(i) = (x-x^(i+1))/(1-x). %F A242635 a(n) ~ n^n. - _Vaclav Kotesovec_, Aug 27 2014 %p A242635 a:= proc(n) option remember; local v; %p A242635 v:= i-> (x-x^(i+1))/(1-x); %p A242635 coeff(series(1/(1-add(v(i)/(1+v(i)), i=1..n)), x, n+1), x, n) %p A242635 end: %p A242635 seq(a(n), n=0..25); %t A242635 b[n_, k_, c_, t_] := b[n, k, c, t] = If[n == 0, 1, Sum[If[c == t && j == c, 0, b[n - 1, k, j, 1 + If[j == c, t, 0]]], {j, 1, k}]]; %t A242635 a[n_] := b[n, n, 0, 0]; %t A242635 a /@ Range[0, 25] (* _Jean-François Alcover_, Dec 28 2020, from Maple code of A242464 *) %Y A242635 Main diagonal of A242464. %K A242635 nonn %O A242635 0,3 %A A242635 _Geoffrey Critzer_ and _Alois P. Heinz_, May 19 2014