This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242636 #17 Jan 27 2025 10:23:27 %S A242636 1,0,3,12,23,94,289,842,2771,8510,26411,83122,258199,805914,2517287, %T A242636 7846960,24490017,76416244,238387767,743840496,2320800841,7240890040, %U A242636 22592311143,70488834118,219928631821,686190651342,2140948175385,6679872756528,20841562274863 %N A242636 Number of tilings of a 4 X n rectangle using tetrominoes of shapes L, Z, O. %H A242636 Alois P. Heinz, <a href="/A242636/b242636.txt">Table of n, a(n) for n = 0..1000</a> %H A242636 Nicolas Bělohoubek and Antonín Slavík, <a href="https://msekce.karlin.mff.cuni.cz/~slavik/papers/L-tetromino-tilings.pdf">L-Tetromino Tilings and Two-Color Integer Compositions</a>, Univ. Karlova (Czechia, 2025). See p. 10. %H A242636 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetromino">Tetromino</a> %H A242636 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,6,13,3,-18,-13,-3,1,-2,-4,0,-2). %F A242636 G.f.: (x^6-x^5-2*x^4+x^3+3*x^2-1) / (-2*x^12 -4*x^10 -2*x^9 +x^8 -3*x^7 -13*x^6 -18*x^5 +3*x^4 +13*x^3 +6*x^2 -1). %e A242636 a(3) = 12: %e A242636 ._____. ._____. .___._. ._.___. ._____. ._____. %e A242636 | .___| |___. | | | | | | | |___. | | .___| %e A242636 |_|_. | | ._|_| |___| | | |___| | |_| |_| | %e A242636 | | | | | | | |___| |___| | |___| | | |___| %e A242636 |___|_| |_|___| |_____| |_____| |_____| |_____| %e A242636 ._____. ._____. ._.___. .___._. ._____. ._____. %e A242636 | .___| |___. | | |_. | | ._| | | .___| |___. | %e A242636 |_| ._| |_. |_| |_. | | | | ._| |_| | | | | |_| %e A242636 |___| | | |___| | |_|_| |_|_| | | ._| | | |_. | %e A242636 |_____| |_____| |_____| |_____| |_|___| |___|_|. %p A242636 gf:= (x^6-x^5-2*x^4+x^3+3*x^2-1) / (-2*x^12 -4*x^10 -2*x^9 +x^8 -3*x^7 -13*x^6 -18*x^5 +3*x^4 +13*x^3 +6*x^2 -1): %p A242636 a:= n-> coeff(series(gf, x, n+1), x, n): %p A242636 seq(a(n), n=0..40); %Y A242636 Cf. A084480, A174248, A226322, A230031, A232497, A233139, A233191, A233266. %K A242636 nonn,easy %O A242636 0,3 %A A242636 _Alois P. Heinz_, May 19 2014