A242653 Triangle read by rows: T(n,k) = ((n+k)/2)!/k! if n,k have same parity, otherwise 0.
1, 0, 1, 1, 0, 1, 0, 2, 0, 1, 2, 0, 3, 0, 1, 0, 6, 0, 4, 0, 1, 6, 0, 12, 0, 5, 0, 1, 0, 24, 0, 20, 0, 6, 0, 1, 24, 0, 60, 0, 30, 0, 7, 0, 1, 0, 120, 0, 120, 0, 42, 0, 8, 0, 1, 120, 0, 360, 0, 210, 0, 56, 0, 9, 0, 1, 0, 720, 0, 840, 0, 336, 0, 72, 0, 10, 0, 1, 720, 0, 2520, 0, 1680, 0, 504, 0, 90, 0, 11, 0, 1
Offset: 0
Examples
Triangle begins: 1 0 1 1 0 1 0 2 0 1 2 0 3 0 1 0 6 0 4 0 1 6 0 12 0 5 0 1 0 24 0 20 0 6 0 1 ...
Links
- Robert Israel, Table of n, a(n) for n = 0..10010
- Alexander Kreinin, Combinatorial Properties of Mills' Ratio, arXiv:1405.5852, 2014. See Table 4.
Crossrefs
Cf. A122851.
Programs
-
Maple
N:= 1000; # to get a(0) to a(N) count:= -1; for n from 0 while count < N do for k from 0 to n while count < N do count:= count+1; if type(n-k,even) then A[count]:= ((n+k)/2)!/k! else A[count]:= 0 fi; od od: seq(A[i],i=0..N); # Robert Israel, Jun 10 2014
-
Mathematica
Table[If[EvenQ[n-k], ((n+k)/2)!/k!, 0], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 19 2018 *)