cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242661 Nonnegative integers of the form x^2 + 4xy - 2y^2.

This page as a plain text file.
%I A242661 #12 Jun 03 2022 14:55:56
%S A242661 0,1,3,4,9,10,12,16,19,25,27,30,36,40,43,46,48,49,57,58,64,67,73,75,
%T A242661 76,81,90,94,97,100,106,108,115,120,121,129,138,139,142,144,145,147,
%U A242661 160,163,169,171,172,174,184,190,192,193,196,201,202,211,219,225,228,232,235,241,243,250,256,265,268,270,282,283,289,291,292,298,300
%N A242661 Nonnegative integers of the form x^2 + 4xy - 2y^2.
%C A242661 Discriminant 24.
%C A242661 From _Jon E. Schoenfield_, Jun 03 2022: (Start)
%C A242661 Also nonnegative integers of the form 3x^2 - 2y^2.
%C A242661 Also nonnegative integers of the form  x^2 - 6y^2. (End)
%H A242661 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t A242661 Reap[For[n = 0, n <= 300, n++, If[Reduce[x^2 + 4*x*y - 2*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]
%Y A242661 Primes in this sequence = A141170.
%K A242661 nonn
%O A242661 1,3
%A A242661 _N. J. A. Sloane_, May 31 2014