cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242665 Nonnegative integers of the form -x^2 + 4xy + 2y^2.

Original entry on oeis.org

0, 2, 5, 6, 8, 15, 18, 20, 23, 24, 29, 32, 38, 45, 47, 50, 53, 54, 60, 69, 71, 72, 80, 86, 87, 92, 95, 96, 98, 101, 114, 116, 125, 128, 134, 135, 141, 146, 149, 150, 152, 159, 162, 167, 173, 180, 188, 191, 194, 197, 200, 207, 212, 213, 215, 216, 230, 239, 240, 242, 245, 258, 261, 263, 269, 276, 278, 284, 285, 288, 290, 293, 294
Offset: 1

Views

Author

N. J. A. Sloane, May 31 2014

Keywords

Comments

Discriminant 24.
Multiplied by -1, these are the nonpositive norms of numbers in Z[sqrt(6)]. - Alonso del Arte, Sep 26 2014
Nonnegative integers of the form 2*x^2 - 3*y^2. - Robert Israel, Jun 03 2018
Nonnegative integers of the form 6*x^2 - y^2. - Jon E. Schoenfield, Jun 03 2022

Crossrefs

Primes in this sequence = A141171.

Programs

  • Maple
    filter:= proc(n) local F;
      F:= map(proc(t) local p; p:= t[1] mod 24; if t[2]::even or member(p,{3,1,19}) then NULL else p fi end proc, ifactors(n)[2]);
      if convert(F,set) intersect {7,11,13,17} <> {} then return false fi;
      nops(F)::odd
    end proc:
    filter(0):= true:
    select(filter, [$0..400]); # Robert Israel, Jun 03 2018
  • Mathematica
    Reap[For[n = 0, n <= 300, n++, If[Reduce[-x^2 + 4*x*y + 2*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]]