cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A242667 Number of ways of representing n as the sum of one or more consecutive squarefree numbers.

Original entry on oeis.org

1, 1, 2, 0, 2, 2, 1, 1, 0, 2, 3, 0, 2, 2, 1, 1, 3, 1, 1, 0, 3, 1, 3, 2, 0, 1, 1, 2, 2, 1, 2, 1, 2, 4, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 2, 2, 2, 1, 1, 0, 2, 1, 2, 0, 4, 0, 3, 2, 3, 0, 3, 2, 1, 1, 2, 3, 2, 0, 3, 3, 3, 3, 1, 1, 1, 1, 2, 3, 2, 2
Offset: 1

Views

Author

Irina Gerasimova, May 20 2014

Keywords

Examples

			a(6)=2 because n=6 itself is already a squarefree number (sum of 1 term), and 6 can in addition be written as A005117(1)+ A005117(2)+A005117(3), a sum of 3 consecutive squarefree numbers.
		

Crossrefs

Cf. A005117.

Programs

  • Maple
    A242667 := proc(n)
        a := 0 ;
        for i from 1 do
            if A005117(i) > n then
                return a;
            end if;
            for k from i do
                su := add(A005117(s),s=i..k) ;
                if su = n then
                    a := a+1 ;
                elif su > n then
                    break;
                fi ;
            end do:
        end do:
    end proc:
    seq(A242667(n),n=1..80) ; # R. J. Mathar, Jun 12 2014
    # Alternative:
    N:= 1000:# to get the first N entries
    A005117:= select(numtheory:-issqrfree,[$1..N]):
    M:= nops(A005117);
    A:= Array(1..N):
    t0:= 0:
    for n from 1 to M-1 do
      t0:= t0 + A005117[n];
      t:= t0;
      for i from 1 while t <= N do
         A[t] := A[t]+1;
         if n+i > M then break fi;
         t:= t + A005117[n+i]-A005117[i];
      od;
    od:
    seq(A[i],i=1..N); # Robert Israel, Jun 25 2014
  • Mathematica
    With[{N = 100}, (* to get the first N entries *)
    A005117 = Select[Range[N], SquareFreeQ];
    M = Length[A005117];
    A = Table[0, {N}];
    t0 = 0;
    For[n = 1, n <= M-1, n++,
       t0 = t0+A005117[[n]];
       t = t0;
       For[i = 1, t <= N, i++,
          A[[t]] = A[[t]]+1;
          If[n+i > M, Break[]];
          t = t + A005117[[n+i]] - A005117[[i]]]
       ]
    ];
    A (* Jean-François Alcover, Feb 07 2023, after Robert Israel *)