A242674 Decimal expansion of the asymptotic probability of success in one of the Secretary problems.
5, 8, 0, 1, 6, 4, 2, 2, 3, 9, 2, 0, 8, 5, 5, 3, 4, 6, 4, 2, 6, 0, 0, 8, 3, 2, 3, 5, 7, 2, 9, 9, 7, 2, 7, 6, 6, 3, 3, 0, 8, 8, 6, 3, 8, 1, 1, 1, 1, 0, 1, 4, 0, 4, 3, 1, 6, 8, 7, 4, 1, 1, 7, 9, 2, 1, 6, 6, 1, 3, 8, 7, 7, 9, 6, 9, 2, 9, 2, 4, 9, 1, 8, 4, 5, 9, 3, 1, 5, 2, 6, 8, 4, 4, 7, 0, 3, 4, 7, 4
Offset: 0
Examples
0.580164223920855346426008323572997276633...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.15, p. 362.
Links
- Eric Weisstein's MathWorld, Sultan's Dowry Problem
- Wikipedia, Secretary problem
Programs
-
Mathematica
a = x /. FindRoot[ExpIntegralEi[x] - EulerGamma - Log[x] == 1, {x, 1}, WorkingPrecision -> 105]; Exp[-a] - (Exp[a]-a-1)*ExpIntegralEi[-a] // RealDigits[#, 10, 100]& // First
Formula
exp(-a) - (exp(a)-a-1)*Ei(-a), where a is the unique real solution of the equation Ei(a)-gamma-log(a) = 1, Ei being the exponential integral function, and gamma the Euler-Mascheroni constant (0.5772156649...).
Comments