This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242676 #11 May 20 2025 08:11:03 %S A242676 1,6,13068,150917976,5056995703824,371384787345228000, %T A242676 50779532534302850198976,11616723683566425573507775872, %U A242676 4123257155075936045020928754053376,2146734309994687055429549444238169536000,1569808063009967047226374755685187772671339520 %N A242676 a(n) = |Stirling1(4*n,n)|. %C A242676 Generally, for p>=2 is Abs(StirlingS1(p*n,n)) asymptotic to n^((p-1)*n) * c^(p*n) * p^((2*p-1)*n) / (sqrt(2*Pi*p*(c-1)*n) * exp((p-1)*n) * (c*p-1)^((p-1)*n)), where c = -LambertW(-1,-exp(-1/p)/p). %F A242676 a(n) ~ n^(3*n) * c^(4*n) * 2^(14*n-1) / (sqrt(2*Pi*(c-1)*n) * exp(3*n) * (4*c-1)^(3*n)), where c = -LambertW(-1,-exp(-1/4)/4) = 2.58666298226305388118285... %F A242676 From _Seiichi Manyama_, May 20 2025: (Start) %F A242676 a(n) = A132393(4*n,n). %F A242676 a(n) = (4*n)! * [x^(4*n)] (-log(1 - x))^n / n!. (End) %p A242676 seq(abs(Stirling1(4*n,n)), n=0..20); %t A242676 Table[Abs[StirlingS1[4*n, n]],{n,0,20}] %Y A242676 Cf. A187646, A237993, A217914. %K A242676 nonn,easy %O A242676 0,2 %A A242676 _Vaclav Kotesovec_, May 20 2014