This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242680 #13 Jun 04 2019 21:39:07 %S A242680 1,2,3,9,11,41,63,77,91,99,219,303,411,999,1353,5291,6363,6993,7777, %T A242680 8547,9009,9191,9901,9999,12561,23661,41841,47027,75609,90243,99999, %U A242680 110011,122859,124533,125341,152207,169983,170017,473211,487179,513513,575757,578369,626373,683527,703703,740259,904761,999001,999999,2463661,2709729,2754573 %N A242680 Numbers k dividing every cyclic permutation of k^3. %C A242680 Includes k if 10^(d-1) <= k^3 < 10^d and k | 10^d-1. Is 2 the only member of the sequence that is not of this form? - _Robert Israel_, Jun 04 2019 %H A242680 Robert Israel, <a href="/A242680/b242680.txt">Table of n, a(n) for n = 1..130</a> %e A242680 41 is a term as the cyclic permutations of 41^3 = 68921 are {68921, 89216, 92168, 21689, 16892} %e A242680 and %e A242680 68921 = 41*1681; %e A242680 89216 = 41*2176; %e A242680 92168 = 41*2248; %e A242680 21689 = 41*529; %e A242680 16892 = 41*412. %p A242680 filter:= proc(n) local d,t,r,i; %p A242680 d:= ilog10(n^3); %p A242680 t:= n^3; %p A242680 for i from 1 to d do %p A242680 r:= t mod 10; %p A242680 t:= 10^d*r + (t-r)/10; %p A242680 if not (t/n)::integer then return false fi; %p A242680 od; %p A242680 true %p A242680 end proc: %p A242680 select(filter, [$1..10^7]); # _Robert Israel_, Jun 04 2019 %t A242680 Select[Range[300000], And@@Divisible[FromDigits/@Table[ RotateRight[ IntegerDigits[ #^3], n], {n, IntegerLength[#^3]}], #]&] %Y A242680 Cf. A178028. %K A242680 nonn,base %O A242680 1,2 %A A242680 _Michel Lagneau_, May 20 2014 %E A242680 More terms from _Robert Israel_, Jun 04 2019