cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242712 Decimal expansion of C_4, a constant related to sharp inequalities for the product of 4 polynomials, which was introduced by David Boyd.

Original entry on oeis.org

1, 9, 4, 8, 4, 5, 4, 7, 8, 8, 9, 5, 8, 8, 3, 5, 6, 0, 6, 7, 0, 3, 1, 0, 2, 4, 6, 6, 8, 8, 6, 5, 7, 5, 5, 5, 8, 3, 0, 0, 7, 5, 8, 1, 7, 2, 0, 8, 8, 3, 4, 5, 8, 3, 8, 6, 1, 7, 8, 1, 6, 5, 3, 9, 0, 0, 8, 5, 9, 5, 9, 1, 3, 5, 0, 4, 1, 4, 2, 2, 0, 5, 9, 6, 4, 3, 4, 5, 9, 5, 5, 3, 3, 9, 4, 5, 7, 8, 1, 4
Offset: 1

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Examples

			1.9484547889588356067031024668865755583...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 3.10 p. 233.

Crossrefs

Cf. A130834 (C_2), A242711 (C_3), A242713 (C_5), A242714 (C_6).

Programs

  • Mathematica
    Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; c[m_] := Exp[m/Pi*Clausen2[Pi - Pi/m]]; RealDigits[c[4], 10, 100] // First
  • PARI
    exp(4*imag(polylog(2, exp(3*I*Pi/4)))/Pi) \\ Charles R Greathouse IV, Jul 15 2014

Formula

exp(4/Pi*Clausen2(Pi - Pi/4)), where Clausen2 is Clausen's Integral.

A242713 Decimal expansion of C_5, a constant related to sharp inequalities for the product of 5 polynomials, which was introduced by David Boyd.

Original entry on oeis.org

1, 9, 6, 7, 0, 4, 4, 9, 0, 1, 0, 8, 8, 0, 7, 1, 8, 8, 8, 3, 5, 1, 4, 3, 2, 4, 1, 4, 5, 8, 2, 8, 2, 8, 0, 5, 4, 6, 9, 3, 4, 5, 1, 3, 8, 7, 7, 1, 2, 7, 5, 8, 1, 5, 6, 6, 4, 2, 0, 8, 4, 3, 8, 7, 0, 3, 6, 4, 0, 2, 9, 2, 7, 3, 0, 3, 9, 5, 2, 6, 8, 1, 2, 6, 3, 1, 4, 1, 8, 3, 9, 4, 3, 5, 2, 1, 2, 1, 6, 7
Offset: 1

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Examples

			1.967044901088071888351432414582828054693451...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 3.10 p. 233.

Crossrefs

Cf. A130834 (C_2), A242711 (C_3), A242712 (C_4), A242714 (C_6).

Programs

  • Mathematica
    Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; c[m_] := Exp[m/Pi*Clausen2[Pi - Pi/m]]; RealDigits[c[5], 10, 100] // First
  • PARI
    exp(5*imag(polylog(2, exp(4*I*Pi/5)))/Pi) \\ Charles R Greathouse IV, Jul 15 2014

Formula

exp(5/Pi*Clausen2(Pi - Pi/5)), where Clausen2 is Clausen's Integral.

A242714 Decimal expansion of C_6, a constant related to sharp inequalities for the product of 6 polynomials, which was introduced by David Boyd.

Original entry on oeis.org

1, 9, 7, 7, 1, 2, 6, 8, 3, 0, 8, 0, 3, 9, 3, 4, 3, 8, 6, 6, 9, 8, 3, 6, 7, 1, 7, 5, 2, 5, 3, 9, 7, 5, 6, 0, 2, 1, 3, 6, 6, 0, 4, 9, 7, 2, 7, 9, 6, 5, 1, 1, 8, 1, 0, 7, 2, 4, 4, 4, 5, 7, 8, 5, 7, 4, 3, 9, 7, 0, 0, 8, 9, 6, 8, 0, 9, 9, 7, 8, 2, 2, 9, 8, 9, 9, 1, 9, 0, 0, 2, 7, 5, 0, 5, 0, 2, 5, 0, 7
Offset: 1

Views

Author

Jean-François Alcover, May 21 2014

Keywords

Examples

			1.9771268308039343866983671752539756021366...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 3.10 p. 233.

Crossrefs

Cf. A130834 (C_2), A242711 (C_3), A242712 (C_4), A242713 (C_5).

Programs

  • Mathematica
    Clausen2[x_] := Im[PolyLog[2, Exp[x*I]]]; c[m_] := Exp[m/Pi*Clausen2[Pi - Pi/m]]; RealDigits[c[6], 10, 100] // First
  • PARI
    exp(6*imag(polylog(2, exp(5*I*Pi/6)))/Pi) \\ Charles R Greathouse IV, Jul 15 2014

Formula

exp(6/Pi*Clausen2(Pi - Pi/6)), where Clausen2 is Clausen's Integral.
Showing 1-3 of 3 results.