This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A242726 #17 Jan 26 2024 04:24:58 %S A242726 66,286,606,682,2222,2486,2626,2882,3333,3939,5555,6262,6842,6886, %T A242726 7777,9393,14443,18887,22462,22682,22826,24266,26422,26462,26686, %U A242726 28622,33693,34441,36399,39633,39693,62822,66242,68662,78881,99363,118877,125543,145541 %N A242726 Sphenic numbers k = p*q*r such that reversal(k) is also a sphenic number and reversal(k) = reversal(p)*reversal(q)*reversal(r). %C A242726 Subsequence of A007304. A sphenic number is a number that is the product of 3 distinct primes. %H A242726 Chai Wah Wu, <a href="/A242726/b242726.txt">Table of n, a(n) for n = 1..2175</a> %e A242726 3196751 = 31*101*1021 is in the sequence because reversal(3196751) = 1576913 = 13*101*1201 => 31 = reversal(13), 101 = reversal(101) and 1201 = reversal(1021). %p A242726 with(numtheory): %p A242726 for n from 30 to 150000 do : %p A242726 x:=factorset(n):n1:=nops(x): %p A242726 if bigomega(n)= 3 and n1>2 %p A242726 then %p A242726 y:=convert(n,base,10):n2:=nops(y): %p A242726 p:=x[1]:q:=x[2]:r:=x[3]: %p A242726 xp1:=convert(p,base,10):nxp1:=nops(xp1): %p A242726 xq1:=convert(q,base,10):nxq1:=nops(xq1): %p A242726 xr1:=convert(r,base,10):nxr1:=nops(xr1): %p A242726 sp:=sum('xp1[i]*10^(nxp1-i)', 'i'=1..nxp1): %p A242726 sq:=sum('xq1[i]*10^(nxq1-i)', 'i'=1..nxq1): %p A242726 sr:=sum('xr1[i]*10^(nxr1-i)', 'i'=1..nxr1): %p A242726 lst:={sp} union {sq} union {sr}: %p A242726 s:=sum('y[i]*10^(n2-i)', 'i'=1..n2):x1:=factorset(s):nn1:=nops(x1): %p A242726 if bigomega(s)=3 and nn1>2 %p A242726 then %p A242726 z:=convert(s,base,10):n3:=nops(z): %p A242726 p1:=x1[1]:q1:=x1[2]:r1:=x1[3]: %p A242726 lst1:={p1} union {q1} union {r1}: %p A242726 s1:=sum('z[i]*10^(n3-i)','i'=1..n3): %p A242726 if lst = lst1 %p A242726 then %p A242726 printf(`%d, `,n): %p A242726 else %p A242726 fi: %p A242726 fi: %p A242726 fi: %p A242726 od: %Y A242726 Cf. A007304, A242592. %K A242726 nonn,base %O A242726 1,1 %A A242726 _Michel Lagneau_, May 21 2014