A242730 Decimal expansion of the Conway-Guy constant, a constant associated with Erdős' sum-distinct set constant.
2, 3, 5, 1, 2, 5, 2, 8, 4, 8, 1, 1, 1, 7, 4, 8, 6, 5, 6, 3, 5, 5, 8, 8, 1, 7, 4, 3, 9, 1, 8, 7, 9, 0, 0, 9, 8, 8, 0, 9, 8, 4, 5, 1, 9, 5, 8, 3, 5, 2, 9, 5, 9, 8, 5, 8, 2, 6, 7, 7, 9, 6, 6, 3, 1, 6, 7, 0, 3, 1, 9, 0, 5, 1, 3, 7, 1, 3, 2, 4, 8, 7, 4, 7, 1, 4, 0, 9, 0, 0, 0, 0, 1, 5, 0, 0, 3, 1, 1, 7
Offset: 0
Examples
0.23512528481117486563558817439187900988...
References
- J. H. Conway and R. K. Guy, “Sets of Natural Numbers with Distinct Sums,” Notices Amer. Math. Soc., vol. 15, 1968.
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.28, p. 189.
Links
- W. F. Lunnon, Integer sets with distinct subset-sums, Math. Comp. 50 (1988), 297-320.
Programs
-
Mathematica
digits = 100; Clear[v, s]; v[n_] := v[n] = 2*v[n-1] - v[n-1 - Floor[1/2 + Sqrt[2*(n-1)]]]; v[0] = 0; v[1] = 1; s[k_] := s[k] = v[k]/2^k // N[#, digits + 5] &; s[dk = 250]; s[k = 2*dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First